Skip to main content
Log in

Classification of blocker and non-blocker of hERG potassium ion channel using a support vector machine

  • Articles
  • Special Topic Chemistry for Life Sciences
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The human ether-a-go-go related gene (hERG) channel is responsible for the repolarization during the action potential, and blockage of that may result in severe cardiotoxicity and sudden death. In this study, a dataset containing 1969 compounds was compiled from literature and FDA-approved drugs. Using a support vector machine (SVM), two groups of computational models were built to distinguish whether a compound is a blocker or non-blocker of hERG potassium ion channel. These models fit generally satisfactory. The 100 models built with MACCS fingerprints (Model Group A) showed an average accuracy of 90% and an average matthews correlation coefficient (MCC) value of 0.77 on the test sets. The 100 models built with selected MOE descriptors (Model Group B) showed an average accuracy of 89% and an average MCC value of 0.74 on the test sets. Molecular hydrophobicity and lipophilicity were found to be very important factors which lead to block the hERG potassium ion channel. Some other molecular properties such as electrostatic properties, features based on van der Waals surface area, the number of rigid bonds and molecular surface rugosity also played important roles in blocking hERG potassium ion channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azzaoui K, Hamon J, Faller B, Whitebread S, Jacoby E, Bender A, Jenkins JL, Urban L. Modeling promiscuity based on in vitro safety pharmacology profiling data. ChemMedChem, 2007, 2: 874–880

    Article  CAS  Google Scholar 

  2. Bender A, Scheiber J, Glick M, Davies JW, Azzaoui K, Hamon J, Urban L, Whitebread S, Jenkins JL. Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from chemical structure. ChemMedChem, 2007, 2: 861–873

    Article  CAS  Google Scholar 

  3. Schuster D, Laggner C, Langer T. Why drugs fail: A study on side effects in new chemical entities. Curr Pharm Des, 2005, 11: 3545–3559

    Article  CAS  Google Scholar 

  4. Aronov AM. Predictive in silico modeling for hERG channel blockers. Drug Discov Today, 2005, 10: 149–155

    Article  CAS  Google Scholar 

  5. Warmke JW, Ganetzky B. A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci USA, 1994, 91: 3438–3442

    Article  CAS  Google Scholar 

  6. Brown A. Drugs, hERG and sudden death. Cell Calcium, 2004, 35: 543–547

    Article  CAS  Google Scholar 

  7. Recanatini M, Poluzzi E, Masetti M, Cavalli A, de Ponti F. QT prolongation through hERG K+ channel blockade: Current knowledge and strategies for the early prediction during drug development. Med Res Rev, 2005, 25: 133–166

    Article  CAS  Google Scholar 

  8. Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature, 2006, 440: 463–469

    Article  CAS  Google Scholar 

  9. Farid R, Day T, Friesner RA, Pearlstein RA. New insights about HERG blockade obtained from protein modeling, potential energy mapping, and docking studies. Bioorg Med Chem, 2006, 14: 3160–3173

    Article  CAS  Google Scholar 

  10. Österberg F, Åqvist J. Exploring blocker binding to a homology model of the open hERG K〈sup〉+〈/sup〉 channel using docking and molecular dynamics methods. FEBS Lett, 2005, 579: 2939–2944

    Article  Google Scholar 

  11. Rajamani R, Tounge BA, Li J, Reynolds CH. A two-state homology model of the hERG K〈sup〉+〈/sup〉 channel: Application to ligand binding. Bioorg Med Chem Lett, 2005, 15: 1737–1741

    Article  CAS  Google Scholar 

  12. Song M, Clark M. Development and evaluation of an in silico model for hERG binding. J Chem Inf Model, 2006, 46: 392–400

    Article  CAS  Google Scholar 

  13. Yoshida K, Niwa T. Quantitative structure-activity relationship studies on inhibition of HERG potassium channels. J Chem Inf Model, 2006, 46: 1371–1378

    Article  CAS  Google Scholar 

  14. Seierstad M, Agrafiotis DK. A QSAR model of hERG binding using a large, diverse, and internally consistent training set. Chem Biol Drug Des, 2006, 67: 284–296

    Article  CAS  Google Scholar 

  15. Marchese Robinson RL, Glen RC, Mitchell JB. Development and comparison of hERG blocker classifiers: Assessment on different datasets yields markedly different results. Mol Inform, 2011, 30: 443–458

    Article  CAS  Google Scholar 

  16. Wang Z, Mussa HY, Lowe R, Glen RC, Yan A. Probability based hERG blocker classifiers. Mol Inform, 2012, 31: 679–685

    Article  Google Scholar 

  17. Moorthy N, Ramos M, Fernandes P. Analysis of van der Waals surface area properties for human ether-a-go-go-related gene blocking activity: Computational study on structurally diverse compounds. SAR QSAR Environ Res, 2012, 23: 521–536

    Article  CAS  Google Scholar 

  18. Aronov AM, Goldman BB. A model for identifying HERG K〈sup〉+〈/sup〉 channel blockers. Bioorg Med Chem, 2004, 12: 2307–2315

    Article  CAS  Google Scholar 

  19. Du-Cuny L, Chen L, Zhang S. A critical assessment of combined ligand-and structure-based approaches to HERG channel blocker modeling. J Chem Inf Model, 2011, 51: 2948–2960

    Article  Google Scholar 

  20. Thai KM, Ecker GF. A binary QSAR model for classification of hERG potassium channel blockers. Bioorg Med Chem, 2008, 16: 4107–4119

    Article  CAS  Google Scholar 

  21. Nisius B, Göller AH, Bajorath J. Combining cluster analysis, feature selection and multiple support vector machine models for the identification of human ether-a-go-go related gene channel blocking compounds. Chem Biol Drug Des, 2009, 73: 17–25

    Article  CAS  Google Scholar 

  22. Su BH, Shen M, Esposito EX, Hopfinger AJ, Tseng YJ. In silico binary classification QSAR models based on 4D-fingerprints and MOE descriptors for prediction of hERG blockage. J Chem Inf Model, 2010, 50: 1304–1318

    Article  CAS  Google Scholar 

  23. The Molecular Operating Environment (MOE), Version 2010.10. Chemical Computing Group Inc., 2010

  24. Wang S, Li Y, Wang J, Chen L, Zhang L, Yu H, Hou T. ADMET evaluation in erug discovery. 12. Developmentof binary classification models for prediction of hERG potassium channel blockage. Mol Pharm, 2012, 9: 996–1010

    Article  CAS  Google Scholar 

  25. Wang S, Li Y, Xu L, Li D, Hou T. Recent developments in computational prediction of HERG blockage. Curr Top Med Chem, 2013, 13: 1317–1326

    Article  CAS  Google Scholar 

  26. Polak S, Wiśniowska B, Brandys J. Collation, assessment and analysis of literature in vitro data on hERG receptor blocking potency for subsequent modeling of drugs’ cardiotoxic properties. J Appl Toxicol, 2009, 29: 183–206

    Article  CAS  Google Scholar 

  27. Li Q, Jørgensen FS, Oprea T, Brunak S, Taboureau O. hERG classification model based on a combination of support vector machine method and GRIND descriptors. Mol Pharm, 2008, 5: 117–127

    Article  CAS  Google Scholar 

  28. Doddareddy MR, Klaasse EC, IJzerman AP, Bender A. Prospective validation of a comprehensive in silico hERG model and its applications to commercial compound and drug databases. ChemMedChem, 2010, 5: 716–729

    Article  CAS  Google Scholar 

  29. Vapnik V, Chapelle O. Bounds on error expectation for support vector machines. Neural Comput, 2000, 12: 2013–2036

    Article  CAS  Google Scholar 

  30. Chang CC, Lin CJ. LIBSVM: A library for support vector machine. ACM T Intell Syst Tech, 2011, 2: 27

    Google Scholar 

  31. Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta, 1975, 405: 442–451

    Article  CAS  Google Scholar 

  32. Lasko TA, Bhagwat JG, Zou KH, Ohno-Machado L. The use of receiver operating characteristic curves in biomedical informatics. J Biomed Inform, 2005, 38: 404–415

    Article  Google Scholar 

  33. Lowe R, Glen RC, Mitchell JB. Predicting phospholipidosis using machine learning. Mol Pharm, 2010, 7: 1708–1714

    Article  CAS  Google Scholar 

  34. Waring MJ, Johnstone C. A quantitative assessment of hERG liability as a function of lipophilicity. Bioorg Med Chem Lett, 2007, 17: 1759–1764

    Article  CAS  Google Scholar 

  35. Hou T, Xia K, Zhang W, Xu X. ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach. J Chem Inf Comput Sci, 2004, 44: 266–275

    Article  CAS  Google Scholar 

  36. Wang Y, Ai J, Yue J, Peng X, Ji Y, Zhao A, Gao X, Wang Y, Chen Y, Liu G. Further SAR studies on 3,5-diamino-7-trifluorometh-ylquinolines as highly potent tyrosine kinase c-Met inhibitors: Efforts to correct hERG inhibition. Medchemcomm, 2012, 3: 1423–1427

    Article  CAS  Google Scholar 

  37. Ginman T, Viklund J, Malmström J, Blid J, Emond R, Forsblom R, Johansson A, Kers A, Lake F, Sehgelmeble F. Core refinement towards permeable ß-secretase (BACE-1) inhibitors with low hERG activity. J Med Chem, 2013, 56: 4181–4205

    Article  CAS  Google Scholar 

  38. Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern, 1982, 43: 59–69

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AiXia Yan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xuan, S., Liang, H., Wang, Z. et al. Classification of blocker and non-blocker of hERG potassium ion channel using a support vector machine. Sci. China Chem. 56, 1413–1423 (2013). https://doi.org/10.1007/s11426-013-4946-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4946-1

Keywords

Navigation