Skip to main content
Log in

Two novel terpyridine-based chromophores with donor-acceptor structural model containing modified triphenylamine moiety: Synthesis, crystal structures and two-photon absorption properties

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Two novel terpyridine-based chromophores with D-A (D = donor, A = acceptor) structural model containing modified triphenylamine moiety (L 1 and L 2) have been conveniently synthesized via formylation and reduction in satisfactory yields, and fully characterized. The single crystals of them were obtained and determined by X-ray diffraction analysis. The relationships between structure and photophysical properties of the two chromophores were investigated both experimentally and theoretically. The measured maximum TPA cross-sections per molecular weight (δ max/MW) of the chromophores are 0.63 GM/(g mol) (L 1) and 0.72 GM/(g mol) (L 2), respectively, in DMF as a high polar solvent. The results indicate that the value of δ max/MW could be well tuned by the intramolecular charge transfer (ICT), which could be realized by introducing additional electron-donor/acceptor groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Göppert-Mayer M. Über elementarakte mit zwei Quantensprüngen. Ann Phys (Leipzig), 1931, 9:273–294

    Google Scholar 

  2. Kaiser W, Garrett CGB. Two-photon excitation in CaF2:Eu2+. Phys Rev Lett, 1961:229–231

    Google Scholar 

  3. Cumpston BH, Ananthavel SP, Barlow S, Dyer DL, Ehrlich JE, Erskine LL, Heikal AA, Kuebler SM, Lee IYS, Dianne MM, Qin JQ, Röckel H, Rumi M, Wu XL, Marder SR, Perry JW. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature, 1999, 398:51–54

    Article  CAS  Google Scholar 

  4. Yuan WF, Sun L, Tang HH, Wen YQ, Jiang GY, Huang WH, Jiang L, Song YL, Tian H, Zhu DB. A novel thermally stable spironaphthoxazine and its application in rewritable high density optical data storage. Adv Mater, 2005, 17:156–160

    Article  CAS  Google Scholar 

  5. Li L, Tian YP, Yang JX, Sun PP, Wu JY, Zhou HP, Zhang SY, Jin BK, Xing XJ, Wang CK, Li M, Cheng GH, Tang HH, Huang WH, Tao XT, Jiang MH. Facile synthesis and systematic investigations of a series of novel bent-shaped two-photon absorption chromophores based on pyrimidine. Chem Asian J, 2009, 4:668–680

    Article  CAS  Google Scholar 

  6. Yanez CO, Andrade CD, Yao S, Luchita G, Bondar MV, Belfield KD. Photosensitive polymeric materials for two-photon 3D WORM optical data storage systems. J Am Chem Soc, 2009, 1:2219–2229

    CAS  Google Scholar 

  7. Zhou WH, Kuebler SM, Braun KL, Yu TY, Cammack JK, Ober CK, Perry JW, Marder SR. An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication. Science, 2002, 296:1106–1109

    Article  CAS  Google Scholar 

  8. Kim HM, Cho BR. Two-photon probes for intracellular free metal ions, acidic vesicles, and lipid rafts in live tissues. Acc Chem Res, 2009, 42:863–872

    Article  CAS  Google Scholar 

  9. Berezin MY, Achilefu S. Fluorescence lifetime measurements and biological imaging. Chem Rev, 2010, 110:2641–2684

    Article  CAS  Google Scholar 

  10. Kim MK, Lim CS, Hong JT, Han JH, Jang HY, Kim HM, Cho BR. Sodium-ion-selective two-photon fluorescent probe for in vivo imaging. Angew Chem Int Ed, 2010, 49:364–367

    Article  CAS  Google Scholar 

  11. Lee JH, Lim CS, Tian YS, Han JH, Cho BR. A two-photon fluorescent probe for thiols in live cells and tissues. J Am Chem Soc, 2010, 132:1216–1217

    Article  CAS  Google Scholar 

  12. Wang XC, Tian XH, Zhang Q, Sun PP, Wu JY, Zhou HP, Jin BK, Yang JX, Zhang SY, Wang CK, Tao XT, Jiang MH, Tian YP. Assembly, two-photon absorption, and bioimaging of living cells of a cuprous cluster. Chem Mater, 2012, 24:954–961

    Article  CAS  Google Scholar 

  13. Zheng Z, Yu ZP, Yang MD, Jin F, Zhang Q, Zhou Hp, Wu JY, Tian YP. Substituent group variations directing the molecular packing, electronic structure, and aggregation-induced emission property of isophorone derivatives. J Org Chem, 2013, 78:3222–3234

    Article  CAS  Google Scholar 

  14. LaFratta CN, Fourkas JT, Baldacchini T, Farrer RA. Multiphoton fabrication. Angew Chem Int Ed, 2007, 46:6238–6258

    Article  CAS  Google Scholar 

  15. Zhao C, Burchardt M, Brinkhoff T, Beardsley C, Simon M, Wittstock G. Microfabrication of patterns of adherent marine bacterium Phaeobacter inhibens using soft lithography and scanning probe lithography. Langmuir, 2010, 26:8641–8647

    Article  CAS  Google Scholar 

  16. Kim S, Ohulchanskyy TY, Pudavar HE, Pandey RK, Prasad PN. Organically modified silica nanoparticles co-encapsulating photo-sensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J Am Chem Soc, 2007, 129:2669–2675

    Article  CAS  Google Scholar 

  17. Balaz M, Collins HA, Dahlstedt E, Anderson HL. Synthesis of hydrophilic conjugated porphyrin dimmers for one-photon and two-photon photodynamic therapy at NIR wavelengths. Org Biomol Chem, 2009, 7:874–888

    Article  CAS  Google Scholar 

  18. Gallavardin T, Chloe Armagnat, Maury O, Baldeck PL, Lindgren M, Monnereau C, Andraud C. An improved singlet oxygen sensitizer with two-photon absorption and emission in the biological transparency window as a result of ground state symmetry-breaking. Chem Commun, 2012, 48:1689–1691

    Article  CAS  Google Scholar 

  19. Abbotto A, Beverina L, Bozio R, Bradamante S, Ferrante C, Pagani GA, Signorini R. Push-pull organic chromophores for frequency up-converted lasing. Adv Mater, 2000, 12:1953–1967

    Article  Google Scholar 

  20. Tian H, Feng YL. Next step of photochromic switches? J Mater Chem, 2008, 18: 1617–1622

    Article  CAS  Google Scholar 

  21. Lin TC, He GS, Prasad PN, Tan LS. Degenerate nonlinear absorption and optical power limiting properties of asymmetrically substitute-dstilbenoid chromophores. J Mater Chem, 2004, 14:982–991

    Article  CAS  Google Scholar 

  22. Li SL, Wu JY, Tian YP, Tang YW, Jiang MH, Fun HK, Chantrapromma S. Preparation, characterization, two-photon absorptio and optical limiting properties of a novel metal complex containing carbazole. Opt Mater, 2006, 28:897–903

    Article  CAS  Google Scholar 

  23. Lin TC, Huang YJ, Chen YF, Hu CL. Two-photon absorption and effective broadband optical power limiting properties of a multi-branched chromophore containing 2,3-diarylquinoxalinyl moieties as the electron-pulling units. Tetrahedron, 2010, 66:1375–1382

    Article  CAS  Google Scholar 

  24. Mongin O, Porrès L, Katan C, Pons T, Mertz J, Mireille B-D. Synthesis and two-photon absorption of highly soluble three-branched fluorenylene-vinylene derivatives. Tetrahedron Lett, 2003, 44:8121–8125

    Article  CAS  Google Scholar 

  25. Grabowski ZR, Rotkiewicz K. Structural changes accompanying intramolecular electron transfer: Focus on twisted intramolecular charge-transfer states and structures. Chem Rev, 2003, 103:3839–4031

    Article  Google Scholar 

  26. Beverina L, Fu J, Leclercq A, Zojer E, Pacher P, Barlow S, Stryland EWV, Hagan DJ, Brédas J-L, Marder SR. Two-photon absorption at telecommunications wavelengths in a dipolar chromophore with a pyrrole auxiliary donor and thiazole auxiliary acceptor. J Am Chem Soc, 2005, 127:7282–7283

    Article  CAS  Google Scholar 

  27. Tian YP, Li L, Zhang JZ, Yang JX, Zhou HP, Wu J, Sun PP, Tao LM, Guo YH, Wang CK, Xing H, Huang WH, Tao XT, Jiang MH. Investigations and facile synthesis of a series of novel multi-functional two-photon absorption materials. J Mater Chem, 2007, 17:3646–3654

    Article  CAS  Google Scholar 

  28. Li L, Yang JX, Wang CX, Hu ZJ, Tian YP, Li J, Wang CK, Li M, Cheng GH, Tang HH, Huang WH, Tao XT, Jiang MH. Multi-carbazole derivatives for two-photon absorption data storage: Synthesis, optical properties and theoretical calculation. Sci Chi Chem, 2010, 53:884–890

    Article  CAS  Google Scholar 

  29. Shao JJ, Guan ZP, Yan YL, Jiao CJ, Xu QH, Chi C. Synthesis and characterizations of star-shaped octupolar triazatruxenes-based two-photon absorption chromophores. J Org Chem, 2011, 76:780–790

    Article  CAS  Google Scholar 

  30. Liu B, Zhang Q, Ding HJ, Hu GJ, Du YJ, Wang CK, Wu JY, Li SL, Zhou HP, Yang JX, Tian YP. Synthesis, crystal structures and two-photon absorption properties of a series of terpyridine-based chromophores. Dyes Pigm, 2012, 95:149–160

    Article  CAS  Google Scholar 

  31. Schwich T, Cifuentes MP, Gugger PA, Samoc M, Humphrey MG. Electronic, molecular weight, molecular volume, and financial cost-scaling and comparison of two-photon absorption effieciency in disparate molecules (organometallic complexes for nonlinear optics. 48.)—A response to “comment on ‘organometallic complexes for nonlinear optics. 45. Dispersion of the third-order nonlinear optical properties of triphenylamine-cored alkynylruthenium dendrimers.” Increasing the nonlinear response by two orders of magnitude.” Adv Mater, 2011, 23: 1433–1435

    Article  CAS  Google Scholar 

  32. Roberts RL, Schwich T, Corkery TC, P.Cifuentes M, A.Green K, Farmer JD, Low PJ, Marder TB, Samoc M, Humphrey MG. Organometallic complexes for nonlinear optics. 45. Dispersion of the third-order nonlinear optical properties of triphenylamine-cored alkynylruthenium dendrimers. Adv Mater, 2009, 21: 2318–2322

    Article  CAS  Google Scholar 

  33. Varnavski O, Yan X-Z, Mongin O, Blanchard-Desce M, Goodson T. Strongly interacting organic conjugated dendrimers with enhanced two-photon absorption. J Phys Chem C, 2007, 111:149–162

    Article  CAS  Google Scholar 

  34. Ning ZJ, Tian H. Triarylamine: A promising core unit for efficient photovoltaic materials. Chem Commun, 2009, 45:5483–5495

    Article  Google Scholar 

  35. Cremer J, Briehn CA. Novel highly fluorescent triphenylamine-based oligothiophenes. Chem Mater, 2007, 19:4155–4165

    Article  CAS  Google Scholar 

  36. Sheldrick GM. SHELXTLV 5.1 software reference manual. Madison: BrukerAXS, Inc. 1997

    Google Scholar 

  37. Qiu DF, Zhao Q, Bao XY, Liu KC, Wang HW, Guo YC, Zhang LF, Zeng JL, Wang H. Electropolymerization and characterization of an alternatively conjugated donor-acceptor metallopolymer: Poly-[Ru(4′-(4-(Diphenylamino)phenyl)-2,2′:6′,2″-terpyridine)2]2+. Inorg Chem Commun, 2011, 14:296–299

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Jr. JAM, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, A.Voth G, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, D.Rabuck A, Raghavachari K, Foresman JB, Ortiz JV, Q. Cui, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian03, Revision B. 04, Wallingford: Gaussian, Inc., CT, 2004

    Google Scholar 

  39. Woo HY, Liu B, Kohler B, Korystov D, Mikhailovsky A, Bazan GC. Solvent effects on the two-photon absorption of distyrylbenzene chromophores. J Am Chem Soc, 2005, 127:14721–14729

    Article  CAS  Google Scholar 

  40. Zheng Z, Zhang Q, Yu ZP, Yang MD, Zhou HP, Wu JY, Tian YP. Four new two-photon absorbing imidazo[4,5-f]1,10-phenanthroline derivatives dyes with different dipole moment orientation based on different group: Synthesis, optical characterization and bioimaging. J Mater Chem C, 2013, 1:822–830

    Article  CAS  Google Scholar 

  41. Kong L, Yang JX, Zhou HP, Li SL, Hao FY, Zhang Q, Tu YL, WU J, Xue ZM, Tian YP. Synthesis, photophysical properties and TD-DFT calculation of four two-photon absorbing triphenylamine derivatives. Sci Chi Chem, 2013, 56:106–116

    Article  CAS  Google Scholar 

  42. Hu ZJ, Zhang RL, Sun PP, Li L, Wu JY, Yang JX, Tian YP, Wang CK. Three asymmetrical conjugated D-π-D′ sulfur-containing chromophores with a focus on two-photon absorption. Aust J Chem, 2011, 64:174–179

    Article  CAS  Google Scholar 

  43. DALTON. A molecular electronic structure program. Release Dalton. http://daltonprogram.org/.2011

  44. Strickler JH, Webb WW. Three-dimensional optical data storage in refractive media by two-photon point excitation. Optics Letters, 1991, 16:1780–1782

    Article  CAS  Google Scholar 

  45. Cammi R, Cossi M, Tomasi J. Analytical derivatives for molecular solutes. III. Hartree-Fock static polarizability and hyperpolarizabilities in the polarizable continuum model. J Chem Phys, 1996, 104:4611–4620

    Article  CAS  Google Scholar 

  46. Shen YR. The Principles Of Nonlinear Optics. New York: Wiley, 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JieYing Wu or YuPeng Tian.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Zhang, Q., Ding, H. et al. Two novel terpyridine-based chromophores with donor-acceptor structural model containing modified triphenylamine moiety: Synthesis, crystal structures and two-photon absorption properties. Sci. China Chem. 56, 1315–1324 (2013). https://doi.org/10.1007/s11426-013-4940-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4940-7

Keywords

Navigation