Skip to main content
Log in

Line-profile analysis of excitation spectroscopy in the even 4p5(2P1/2)nl′ [K′] J (l′ = 1,3) autoionizing resonances of Kr

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The even-parity autoionizing resonance series 4p5 np′ [3/2]1,2, [1/2]1, and 4p5 nf′ [5/2]3 of krytpon have been investigated by laser excitation from the two metastable states 4p55s [3/2]2 and 4p55s′ [1/2]0 in the photon energy region of 29000–40000 cm−1 at experimental bandwidth of ∼0.1 cm−1. The excitation spectra of the even-parity autoionizing resonance series, most of which are experimentally studied for the first time in this work, show typical asymmetric line shapes. Complementary information on level energies, quantum defects, line profile indices and resonance widths, resonance lifetimes and reduced widths of the autoionizing resonances are derived by Fano-type line-shape analyses of the experimental results. Results from this work indicate that the line profile index (q) and the resonance width (Γ) are approximately proportional to the effective principal quantum number (n*); the line separation of the 4p5 np′ autoionizing resonances is also in good agreement with theoretical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu KZ. Advanced Atomic and Molecular Physics. Beijing: Science Press, 2000. 4–14

    Google Scholar 

  2. Lu TX, Lu YQ. Principles and Applications of Laser Spectroscopic Techniques. Hefei: University of Science and Technology of China Press, 1999

    Google Scholar 

  3. Small-Warren NE, Chiu LYC. Lifetime of the metastable 3P2 and 3P0 states of rare-gas atoms. Phy Rev A, 1975, 11: 1777–1783

    Article  CAS  Google Scholar 

  4. Bounakhla M, Lemoigne JP, Grandin JP, Husson X, Kucal H, Aymar M. Laser spectroscopy of even parity Rydberg series of krypton. J Phys B: At Mol Opt Phys, 1993, 26: 345–361

    Article  CAS  Google Scholar 

  5. Beutler H. Uber absorptionsserien von argon, krypton und xenon zu termen zwischen den beiden Ionisierungsgrenzen 2P0 3/2 und 2P0 1/2. Z Phys, 1935, 93: 177–196

    Article  Google Scholar 

  6. Yoshino K, Tanaka K. Absorption spectrum of krypton in the vacuum uv region. J Opt Soc Am, 1979, 69: 159–165

    Article  CAS  Google Scholar 

  7. Wada A, Adachi Y, Hirose C. On the spectral profiles of optical transitions to the autoionizing 7d′ and 9s′ levels and configuration interaction in 7d′ levels of Kr. J Chem Phys, 1987, 86: 5904–5908

    Article  CAS  Google Scholar 

  8. Dehmer DL, Pratti ST, Dehmer PM, Three-photon excitation of autoionizing states of atomic krypton between the 2P3/2 and 2P1/2 fine-structure thresholds. Phys Rev A, 1987, 36: 4494–4497

    Article  CAS  Google Scholar 

  9. Huillier AL, Tang X, Lambropoulos P. Multiphoton ionization of rare gases using multichannel-quantum-defect theory. Phys Rev A, 1989, 39: 1112–1122

    Article  Google Scholar 

  10. Wu JZ, Whitfield SB, Caldwell CD, Krause MO, Peter van der Meulen, Fahlman Anders. High-resolution photoelectron spectrometry of selected ns′ and nd′ autoionization resonances in Ar, Kr and Xe. Phys Rev A, 1990, 10: 1350–1357

    Google Scholar 

  11. Maeda K, Ueda K, Ito K. High-resolution measurement for photoabsorption cross sections in the autoionization regions of Ar, Kr and Xe. J Phys B: At Mol Opt Phys, 1993, 26: 1541–1555

    Article  CAS  Google Scholar 

  12. Koeckhoven SM, Burma WJ, de lange CA. Three-photon excitation of autoionizing states of Ar, Kr, and Xe between the 2P3/2 and 2P1/2 ionic limits. Phys Rev A, 1994, 49: 3322–3332

    Article  CAS  Google Scholar 

  13. Ahmed M, Zia MA, Baig MA, Suleman B. Two-photon laser-optogalvanic spectroscopy of the odd-parity Rydberg series of krypton. J Phys B: At Mol Opt Phys, 1997, 30: 2155–2165

    Article  CAS  Google Scholar 

  14. Klar D, Aslam M, Baig MA, Ueda K, Ruf M-W, Hotop H. High-resolution measurements and multichannel quantum defect analysis of the Kr(4p(2P1/2)nd′ J = 2,3) autoionizing resonances. J Phys B: At Mol Opt Phys, 2001, 34: 1549–1568

    Article  CAS  Google Scholar 

  15. Dunning FB, Stebbings RF. Role of autoionization in the near-threshold photoionization of argon and krypton metastable atoms. Phys Rev A, 1974, 9: 2378–2382

    Article  CAS  Google Scholar 

  16. Blazewicz PR, Stockdale JAD, Miller JC, Efthimiopoulos T, Fotakis C. Four-photon excitation of even-patiry Rydberg states in krypton and xenon. Phys Rev A, 1987, 35: 1092–1098

    Article  CAS  Google Scholar 

  17. Audouard E, Laporte P, Subtil JL, Damany N, Pellarin M. Density effect on newly identified high-n Rydberg series of krypton by a resonantly enhanced multiphoton ionization method. Phys Rev A, 1990, 41: 6032–6041

    Article  CAS  Google Scholar 

  18. Koeckhoven SM, Burma WJ, de lange CA. Four-photon excitation of autoionizing states of Ar, Kr, and Xe between the 2P3/2 and 2P1/2 ionic limits. Phys Rev A, 1995, 51: 1097–1109

    Article  CAS  Google Scholar 

  19. Petrov ID, Sukhorukov VL, Hotop H. Autoionizing Rydberg series ncp5 1/2 nl′ [K′]J (l′ = 0–5) of Ne, Ar, Kr, and Xe: General trends for the resonance widths. J Phys B: At Mol Opt Phys, 2002, 35: 323–338

    Article  CAS  Google Scholar 

  20. Peter T, Halfmann T, Even U, Wünnenberg A, Petrov ID, Sukhorukov VL, Hotop H. Experimental and theoretical investigation of even mp5 1/2 np′ autoionizing resonances of rare gas atoms. J Phys B: At Mol Opt Phys, 2005, 38: S51–S64

    Article  Google Scholar 

  21. Li CY, Wang TT, Zhen JF, Zhang Q, Chen Y. Resonance-enhanced photon excitation spectroscopy of the ven-parity autoionizing Rydberg states of Kr. Sci China Ser B-Chem, 2009, 52: 161–168

    Article  CAS  Google Scholar 

  22. Racah G. Theory of Complex Spectra. II. Phys Rev, 1942, 62: 438–462

    Article  CAS  Google Scholar 

  23. Sobelman II. Atomic Spectra and Radiative Transitions. Berlin Heidelberg: Springer-Verlag, 1979

    Book  Google Scholar 

  24. Cowan RD. The Theory of Atomic Structure and Spectra. Berkeley: University of California Press, 1981

    Google Scholar 

  25. Knight RD, Wang LG. J = 1 even patiy autoionization of Xe. J Opt Soc Am B, 1986, 3: 1673–1677

    Article  CAS  Google Scholar 

  26. Fano U. Effects of configuration interaction on intensities and phase shifts. Phys Rev, 1961, 124: 1866–1878

    Article  CAS  Google Scholar 

  27. Fano U, Cooper JW. Line profiles in the far-uv absorption spectra of the rare gases. Phys Rev, 1965, 137: A1364–A1379

    Article  Google Scholar 

  28. Weber JM, Ueda K, Klar D, Kreil J, Ruf MW, Hotop H. Odd Rydberg spectrum of 40Ar(I): High-resolution laser spectroscopy and multichannel quantum defect analysis of the J=2 and 3 levels. J Phys B: At Mol Opt Phys, 1999, 32: 2381–2398

    Article  CAS  Google Scholar 

  29. Knight RD, Wang LG. J = 1 even-parity autoionization in xenon. J Opt Soc Am B, 1986, 3: 1673–1677

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ChunYan Li or Yang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Wang, T., Zhen, J. et al. Line-profile analysis of excitation spectroscopy in the even 4p5(2P1/2)nl′ [K′] J (l′ = 1,3) autoionizing resonances of Kr. Sci. China Chem. 56, 1623–1632 (2013). https://doi.org/10.1007/s11426-013-4927-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4927-4

Keywords

Navigation