Skip to main content
Log in

Construction of deep-blue AIE luminogens with TPE and oxadiazole units

  • Articles
  • Special Topic Aggregated-Induced Emission
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this paper, two AIE-active luminogens (Oxa- p TPE and Oxa- m TPE) constructed from tetraphenylethene and oxadiazole units were successfully synthesized and their thermal, optical and electronic properties were investigated. By linking TPE to the oxadiazole core through meta-or para-position, the intramolecular conjugation is effectively controlled. Thanks to the intelligent molecular design and specific AIE feature, when fabricated as emissive layers in non-doped OLEDs, they exhibit blue or deep-blue emission with CIE coordinates of (0.17, 0.23) and (0.15, 0.12), and good efficiencies with η C, max and η P, max up to 1.52 cd A−1 and 0.84 Im W−1, shedding some light on the construction of deep-blue AIE fluorophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang CW, Vanslyke SA. Organic electroluminescent diodes. Appl Phys Lett, 1987, 51: 913–915

    Article  CAS  Google Scholar 

  2. Baldo MA, Thompson ME, Forrest SR. Efficient phosphorescent emission from organic electroluminescent devices. Nature, 2000, 403: 750–753

    Article  CAS  Google Scholar 

  3. D’Andrade BW, Forrest SR. White organic light-emitting devices for solid-state lighting. Adv Mater, 2004, 16: 1585–1595

    Article  Google Scholar 

  4. Saragi TPI, Spehr T, Siebert A, Fuhrmann-Lieker T, Salbeck J. Spiro compounds for organic optoelectronics. Chem Rev, 2007, 107: 1011–1065

    Article  CAS  Google Scholar 

  5. Liu B, Dan TTT, Bazan GC. Collective response from a cationic tetrahedral fluorene for label-free DNA detection. Adv Funct Mater, 2007, 17: 2432–2438

    Article  CAS  Google Scholar 

  6. Thomas III SW, Joly GD, Swager TM. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev, 2007, 107: 1339–1386

    Article  CAS  Google Scholar 

  7. Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem Rev, 2009, 109: 897–1091

    Article  CAS  Google Scholar 

  8. Hecht S, Frechet JMJ. Dendritic encapsulation of function: Applying nature’s site isolation principle from biomimetics to materials science. Angew Chem Int Ed, 2001, 40: 74–91

    Article  CAS  Google Scholar 

  9. Fan C, Wang S, Hong JW, Bazan GC, Plaxco KW, Heeger AJ. Beyond superquenching: Hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. Proc Natl Acad Sci U S A. 2003, 100: 6297–6301

    Article  CAS  Google Scholar 

  10. Lim SF, Friend RH, Rees ID, Li J, Ma Y, Robinson K, Holms AB, Hennebicq E, Beljonne D, Cacialli F. Suppression of green emission in a new class of blue-emitting polyfluorene copolymers with twisted biphenyl moieties. Adv Funct Mater, 2005, 15: 981–988

    Article  CAS  Google Scholar 

  11. Luo J, Xie Z, Lam JWY, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun, 2001, 1740–1741

  12. Chen J, Xu B, Ouyang X, Tang BZ, Cao Y. Aggregation-induced emission of cis,cis-1,2,3,4-Tetraphenylbutadiene from restricted intramolecular rotation. J Phys Chem A, 2004, 108: 7522–7526

    Article  CAS  Google Scholar 

  13. Li Z, Dong Y, Mi B, Tang Y, Tong H, Dong P, Lam JWY, Ren Y, Sun HHY, Wong K, Gao P, Williams ID, Kwok HS, Tang BZ. Structural control of the photoluminescence of silole regioisomers and their utility as sensitive regiodiscriminating chemosensors and efficient electroluminescent materials. J Phys Chem B, 2005, 109: 10061–10066

    Article  CAS  Google Scholar 

  14. Ren Y, Lam JWY, Dong Y, Tang BZ, Wong KS. Enhanced emission efficiency and excited state lifetime due to restricted intramolecular motion in silole aggregates. J Phys Chem B, 2005, 109: 1135–1140

    Article  CAS  Google Scholar 

  15. Hong Y, Lam JWY, Tang BZ. Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun, 2009, 29: 4332–4353

    Article  Google Scholar 

  16. Hong Y, Lam JWY, Tang BZ. Aggregation-induced emission. Chem Soc Rev, 2011, 40: 5361–5388

    Article  CAS  Google Scholar 

  17. Dong Y, Lam JWY, Qin A, Liu J, Li Z, Tang BZ. Aggregation-induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in organic light-emitting diodes. Appl Phys Lett, 2007, 91: 011111

    Article  Google Scholar 

  18. Kim SK, Park Y, Kang IN, Park JW. New deep-blue emitting materials based on fully substituted ethylene derivatives. J Mater Chem, 2007, 17: 4670–4678

    Article  CAS  Google Scholar 

  19. Shih P, Chuang CY, Chien CH, Diau EWG, Shu CF. iHighly efficient non-doped blue-light-emitting diodes based on an anthrancene derivative end-capped with tetraphenylethylene groups Adv Funct, 2007, 17, 3141–3146

    Article  CAS  Google Scholar 

  20. Zhao Z, Chen S, Shen X, Mahtab F, Yu Y, Lu P, Lam JWY, Kwok HS, Tang BZ. Aggregation-induced emission, self-assembly, and electroluminescence of 4,4′-bis(1,2,2-triphenylvinyl)biphenyl. Chem Commun, 2010, (46): 686–688

    Google Scholar 

  21. Zhao Z, Chen S, Lam JWY, Lu P, Zhong Y, Wong KS, Kwok HS, Tang BZ. Creation of highly efficient solid emitter by decorating pyrene core with AIE-active tetraphenylethene peripheries. Chem Commun, 2010, (46): 2221–2223

    Google Scholar 

  22. Yuan WZ, Lu P, Chen S, Lam JWY, Wang Z, Liu Y, Kwok HS, Ma Y, Tang BZ. Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced emission: Development of highly efficient light emitters in the solid state. Adv Mater, 2010, 22: 2159–2163

    Article  CAS  Google Scholar 

  23. Zhao Z, Lam JWY, Chan CYK, Chen S, Liu J, Lu P, Rodriguez M, Maldonado JL, Ramos-Ortiz G, Sung HHY, Williams ID, Su H, Wong KS, Ma Y, Kwok HS, Qiu H, Tang BZ. Stereoselective synthesis, effi cient light emission, and high bipolar charge mobility of chiasmatic luminogens. Adv Mater, 2011, 23: 5430–5435

    Article  CAS  Google Scholar 

  24. Liu Y, Chen S, Lam JWY, Lu P, Kwok RTK, Mahtab F, Kwok HS and Tang BZ. Tuning the electronic nature of aggregation-induced emission luminogens with enhanced hole-transporting property. Chem Mater, 2011, 2: 2536–2544

    Article  Google Scholar 

  25. Zhao Z, Chen S, Deng C, Lam JWK, Chan CYK, Lu P, Wang Z, Hu B, Chen X, Lu P, Kwok HS, Ma Y, Qiu H, Tang BZ. Construction of efficient solid emitters with conventional and AIE luminogens for blue organic light-emitting diodes. J Mater Chem, 2011, 21: 10949–10956

    Article  CAS  Google Scholar 

  26. Zhao Z, Deng C, Chen S, Lam JWY, Qin W, Lu P, Wang Z, Kwok HS, Ma Y, Qiu H, Tang BZ. Full emission color tuning in luminogens constructed from tetraphenylethene, benzo-2,1,3-thiadiazole and thiophene building blocks. Chem Commun, 2011, (47): 8847–8849

    Google Scholar 

  27. Yuan WZ, Chen S, Lam JWY, Deng C, Lu P, Sung HHY, Williams ID, Kwok HS, Zhang Y, Tang BZ. Towards high efficiency solid emitters with aggregation-induced emission and electron-transport characteristics. Chem Commun, 2011, (47): 11216–11218

    Google Scholar 

  28. Zhao Z, Lu P, Lam JWY, Wang Z, Chan CYK, Sung HHY, Williams ID, Ma Y, Tang BZ. Molecular anchors in the solid state: Restriction of intramolecular rotation boosts emission efficiency of luminogen aggregates to unity. Chem Sci, 2011, 2: 672–675

    Article  CAS  Google Scholar 

  29. Chan CYK, Zhao Z, Lam JWY, Liu J, Chen S, Lu P, Mahtab F, Chen X, Sung HHY, Kwok HS, Ma Y, Williams ID, Wong KS, Tang BZ. Efficient light emitters in the solid state: Synthesis, aggregation-induced emission, electroluminescence, and sensory properties of luminogens with benzene cores and multiple triarylvinyl peripherals. Adv Funct Mater, 2012, 22: 378–389

    Article  CAS  Google Scholar 

  30. Zhao Z, Geng J, Chang Z, Chen S, Deng C, Jiang T, Qin W, Lam JWY, Kwok HS, Qiu H, Liu B, Tang BZ. A tetraphenylethene-based red luminophor for an efficient non-doped electroluminescence device and cellular imaging. J Mater Chem, 2012, 22: 11018–11021

    Article  CAS  Google Scholar 

  31. Chang Z, Jiang Y, He B, Chen J, Yang Z, Lu P, Kwok HS, Zhao Z, Qiu H, Tang BZ. Aggregation-enhanced emission and efficient electroluminescence of tetraphenylethene-cored luminogens. Chem Commun, 2013, 49: 594–596

    Article  CAS  Google Scholar 

  32. Zhou J, Chang Z, Jiang Y, He B, Du M, Lu P, Hong Y, Kwok HS, Qin A, Qiu H, Zhao Z, Tang BZ. From tetraphenylethene to tetranaphthylethene: structural evolution in AIE luminogen continues. Chem Commun, 2013, (49): 2491–2493

    Google Scholar 

  33. Zhao Z, Lam JWY, Tang BZ. Tetraphenylethene: A versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes. J Mater Chem, 2012, 22: 23726–23740

    Article  CAS  Google Scholar 

  34. Li HK, Mei J, Wang J, Zhang S, Zhao QL, Wei Q, Qin AJ, Sun JZ, Tang BZ. Facile synthesis of poly(aroxycarbonyltriazole)s with aggregation-induced emission characteristics by metal-free click polymerization. Sci China Chem, 2011, 54: 611–616

    Article  CAS  Google Scholar 

  35. Qin AJ, Zhang Y, Han N, Mei J, Sun JZ, Fan WM, Tang BZ. Preparation and self-assembly of amphiphilic polymer with aggregation-induced emission characteristics. Sci China Chem, 2012, 55: 772–778

    Article  CAS  Google Scholar 

  36. Leung LM, Lo WY, So SK, Lee KM, Choi WK. A high-efficiency blue emitter for small molecule-based organic light-emitting diode. J Am Chem Soc, 2000, 122: 5640–5641

    Article  CAS  Google Scholar 

  37. Lyu YY, Kwak J, Kwon O, Lee SH, Kim D, Lee C, Char K. Silicon-cored anthracene derivatives as host materials for highly efficient blue organic light-emitting devices. Adv Mater, 2008, 20: 2720–2729

    Article  CAS  Google Scholar 

  38. Huang J, Yang X, Wang J, Zhong C, Wang L, Qin J, Li Z. New tetraphenylethene-based efficient blue luminophors: Aggregation induced emission and partially controllable emitting color. J Mater Chem, 2012, 22: 2478–2484

    Article  CAS  Google Scholar 

  39. Huang J, Sun N, Yang J, Tang R, Li Q, Ma D, Qin J, Li Z. Benzene-cored fluorophors with TPE peripheries: Facile synthesis, crystallization-induced blue-shifted emission, and efficient blue luminogens for non-doped OLEDs. J Mater Chem, 2012, 22: 12001–12007

    Article  CAS  Google Scholar 

  40. Huang J, Sun N, Dong Y, Tang R, Lu P, Cai P, Li Q, Ma D, Qin J, Li Z. Similar or totally different: The control of conjugation degree through minor structural modifications, and deep-blue aggregation-induced emission luminogens for non-doped OLEDs. Adv Funct Mater, 2013, DOI: 10.1002/adfm.201202639

    Google Scholar 

  41. Korn TJ, Knochel P. Cobalt(II)-catalyzed cross-coupling between polyfunctional arylcopper reagents and aryl bromides or chlorides. Angew Chem, Int Ed, 2005, 44: 2947–2951

    Article  CAS  Google Scholar 

  42. Hughes G, Bryce MR. Electron-transporting materials for organic electroluminescent and electrophosphorescent devices. J Mater Chem, 2005, 15: 94–107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Wang or Zhen Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Chen, P., Yang, X. et al. Construction of deep-blue AIE luminogens with TPE and oxadiazole units. Sci. China Chem. 56, 1213–1220 (2013). https://doi.org/10.1007/s11426-013-4925-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4925-6

Keywords

Navigation