Skip to main content
Log in

Theoretical methods for excited state dynamics of molecules and molecular aggregates

  • Perspectives
  • Progress of Projects Supported by NSFC
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

This contribution provides a summary of proposed theoretical and computational studies on excited state dynamics in molecular aggregates, as an important part of the National Natural Science Foundation (NNSF) Major Project entitled “Theoretical study of the low-lying electronic excited state for molecular aggregates”. This study will focus on developments of novel methods to simulate excited state dynamics of molecular aggregates, with the aim of understanding several important chemical physics processes, and providing a solid foundation for predicting the opto-electronic properties of organic functional materials and devices. The contents of this study include: (1) The quantum chemical methods for electronic excited state and electronic couplings targeted for dynamics in molecular aggregates; (2) Methods to construct effective Hamiltonian models, and to solve their dynamics using system-bath approaches; (3) Non-adiabatic mixed quantum-classic methods targeted for molecular aggregates; (4) Theoretical studies of charge and energy transfer, and related spectroscopic phenomena in molecular aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DDC, Dos Santos DA, Brédas JL, Logdlund M, Salaneck WR. Electroluminescence in conjugated polymers. Nature, 1999, 397: 121–128

    Article  CAS  Google Scholar 

  2. Baldo MA, Thompson ME, Forrest SR. High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature, 2000, 403: 750–753

    Article  CAS  Google Scholar 

  3. Peumans P, Uchida S, Forrest SR. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature, 2003, 425: 158–162

    Article  CAS  Google Scholar 

  4. Forrest SR. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004, 428: 911–918

    Article  CAS  Google Scholar 

  5. Van Amerongen H, Valkunas L, Van Grondelle R. Photosythetic Excitons. Singapore: World Scientific, 2000

    Book  Google Scholar 

  6. Renger G. Primary Processes of Photosynthesis: Principles and Apparatus, Part I Photophysical Principles Pigments and Light Harvesting/Adaptation/Stress. Cambridge: Royal Society Chemistry, 2008

    Google Scholar 

  7. González L, Escudero D, Serrano-Andrés L. Progress and challenges in the calculation of electronic excited states. ChemPhysChem, 2012, 13: 28–51

    Article  Google Scholar 

  8. Dreuw A, Head-Gordon M. Single-reference ab initio methods for the calculation of excited states of large molecules. Chem Rev, 2005, 105: 4009–4037

    Article  CAS  Google Scholar 

  9. Marcus RA. Electron-transfer reactions in chemistry — Theory and experiment. Rev Mod Phys, 1993, 65: 599–610

    Article  CAS  Google Scholar 

  10. Förster T. Intermolecular energy migration and fluorescence. Ann Phys, 1948, 2: 55–75

    Article  Google Scholar 

  11. Beljonne D, Curutchet C, Scholes GD, Silbey RJ. Beyond Förster resonance energy transfer in biological and nanoscale systems. J Phys Chem B, 2009, 113: 6583–6599

    Article  CAS  Google Scholar 

  12. Cheng YC, Fleming GR. Dynamics of light harvesting in photosynthesis. Annu Rev Phys Chem, 2009, 60: 241–262

    Article  CAS  Google Scholar 

  13. Makri N. Quantum dissipative dynamics: A numerically exact meth odology. J Phys Chem A, 1998, 102: 4414–4427

    Article  CAS  Google Scholar 

  14. Mak CH, Egger R. Monte Carlo methods for real-time path integration. Adv Chem Phys, 1996, 93: 39–76

    Article  CAS  Google Scholar 

  15. Tanimura Y. Stochastic Lionville, Langevin, Fokker-Planck, and master equation approaches to quantum dissipative systems. J Phys Soc Jpn, 2006, 75: 082001

    Article  Google Scholar 

  16. Stockburger JT, Mak CH. Stochastic Liouvillian algorithm to simulate dissipative quantum dynamics with arbitrary precision. J Chem Phys, 1999, 110: 4983–4985

    Article  CAS  Google Scholar 

  17. Yan YA, Fan Y, Yu L, Shao JS. Hierarchical approach based on stochastic decoupling to dissipative systems. Chem Phys Lett, 2004, 395: 216–221

    Article  CAS  Google Scholar 

  18. Thoss M, Wang HB. Semiclassical description of molecular dynamics based on initial-value representation methods. Annu Rev Phys Chem, 2004, 55: 299–332

    Article  CAS  Google Scholar 

  19. Billing GD. Quantum corrections to the classical path theory. J Chem Phys, 1993, 99: 5849–5857

    Article  CAS  Google Scholar 

  20. Tully JC. Molecular-dynamics with electronic transitions. J Chem Phys, 1990, 93: 1061–1071

    Article  CAS  Google Scholar 

  21. Ben-Nun M, Martinez TJ. Ab initio quantum molecular dynamics. Adv Chem Phys, 2002, 121: 439–512

    Article  CAS  Google Scholar 

  22. Kapral R. Progress in the theory of mixed quantum-classical dynamics. Annu Rev Phys Chem, 2006, 57: 129–157

    Article  CAS  Google Scholar 

  23. Duncan WR, Prezhdo OV. Theoretical studies of photoinduced electron transfer in dye-sensitized TiO2. Annu Rev Phys Chem, 2007, 58: 143–184

    Article  CAS  Google Scholar 

  24. Silinsh EA, Capek V. Organic Molecular Crystals: Interaction, Localization, and Transport Phenomena. New York: AIP Press, 1994

    Google Scholar 

  25. Kenkre VM, Reineker P. Exciton Dynamics in Molecular Crystals and Aggregates. Berlin: Springer, 1982

    Google Scholar 

  26. Brédas JL, Beljonne D, Coropceanu V, Cornil J. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: A molecular picture. Chem Rev, 2004, 104: 4971–5003

    Article  Google Scholar 

  27. Coropceanu V, Cornil J, da Silva Filho DA, Oliver Y, Silbey R, Brédas JL. Charge transport in organic semiconductors. Chem Rev, 2007, 107: 926–952

    Article  CAS  Google Scholar 

  28. Grover M, Silbey R. Exciton migration in molecular crystals. J Chem Phys, 1971, 54: 4843–4851

    Article  CAS  Google Scholar 

  29. Silbey R, Munn RW. General theory of electronic transport in molecular-crystals: 1, Local linear electron-phonon coupling. J Chem Phys, 1980, 72: 2763–2773

    Article  CAS  Google Scholar 

  30. Shuai ZG, Wang LJ, Li QK. Evaluation of charge mobility in organic materials: From localized to delocalized descriptions at a first-principles level. Adv Mater, 2011, 23: 1145–1153

    Article  CAS  Google Scholar 

  31. Hannewald K, Stojanović VM, Schellekens JMT, Bobbert PA, Kresse G, Hafner J. Theory of polaron bandwidth narrowing in organic molecular crystals. Phys Rev B, 2004, 69: 075211

    Article  Google Scholar 

  32. Wang LJ, Peng Q, Li QK, Shuai Z. Roles of inter- and intramolecular vibrations and band-hopping crossover in the charge transport in naphthalene crystal. J Chem Phys 2007, 127: 044506

    Article  CAS  Google Scholar 

  33. Troisi A, Orlandi G. Charge-transport regime of crystalline organic selimited by thermal off-diagonal electronic disorder. Phys Rev Lett, 2006, 96: 086601

    Article  Google Scholar 

  34. Wang LJ, Beljonne D, Chen LP, Shi Q. Mixed quantum-classical simulations of charge transport in organic materials: Numerical benchemark of the Su-Schrieffer-Heeger model. J Chem Phys, 2011, 134: 244116

    Article  Google Scholar 

  35. Zhang WW, Zhong XX, Zhao Y. Electron mobilities of n-type organic semiconductors from time-dependent wavepacket diffusion method: Pentacenequinone derivatives. J Phys Chem A, 2012, 116: 11075–11082

    Article  CAS  Google Scholar 

  36. May V, Kuhn O. Charge and Energy Transfer Dynamics in Molecular Systems. Berlin: Wiley-VCH, 2000

    Google Scholar 

  37. Ishizaki A, Fleming GR. On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer. J Chem Phys, 2009, 130: 234110

    Article  Google Scholar 

  38. Ishizaki A, Fleming GR. Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc Natl Acad Sci USA, 2009, 106: 17255–17260

    Article  Google Scholar 

  39. Chen LP, Zheng RH, Shi Q, Yan YJ. Optical line shapes of molecular aggregates: Hierarchical equations of motion method. J Chem Phys, 2009, 131: 094502

    Article  Google Scholar 

  40. Chen LP, Zheng RH, Jing YY, Shi Q. Simulation of the two-dimensional electronic spectra of the Fenna-Matthews-Olson complex using the hierarchical equations of motion method. J Chem Phys, 2011, 134: 194508

    Article  Google Scholar 

  41. Wang D, Chen LP, Zheng RH, Wang LJ, Shi Q. Communications: A nonperturbative quantum master equation approach to charge carrier transport in organic molecular crystals. J Chem Phys, 2010, 132: 081101

    Article  Google Scholar 

  42. Grimme S, Waletzke M. A combination of Kohn-Sham density functional theory and multi-reference configuration interaction methods. J Chem Phys, 1999, 111: 5645

    Article  CAS  Google Scholar 

  43. Pope ME, Swenberg CE. Electronic Processes in Organic Crystals and Polymers. 2nd Edition. New York: Oxford University Press, 1999

    Google Scholar 

  44. Norton JE, Brédas JL. Polarization energies in oligoacene semiconductor crystals. J Am Chem Soc, 2008, 130: 12377–12384

    Article  CAS  Google Scholar 

  45. Hsu CP. The electronic couplings in electron transfer and excitation energy transfer. Acc Chem Res, 2009, 42: 509–518

    Article  CAS  Google Scholar 

  46. Van Voorhis T, Kowalczyk T, Kaduk B, Wang LP, Cheng CL, Wu Q. The diabatic picture of electron transfer, reaction barriers, and molecular dynamics. Annu Rev Phys Chem, 2010, 61: 149–170

    Article  Google Scholar 

  47. Wang LJ, Li QK, Shuai ZG, Chen LP, Shi Q. Multiscale study of charge mobility of organic semiconductor with dynamic disorders. Phys Chem Chem Phys, 2010, 12: 3309–3314

    Article  CAS  Google Scholar 

  48. Liu WJ, Ma J. Theoretical study of low-lying excited states of molecular aggregates. I. Development of linear-scaling TD-DFT. Sci Chi Chem, 2013, 56(9): 1263–1266

    Article  Google Scholar 

  49. Liang WZ, Wu W. Theory and algorithms for the excited states of large molecules and molecular aggregates. Sci Chi Chem, 2013, 56(9): 1267–1270

    Article  Google Scholar 

  50. Jing YY, Zheng RH, Li HX, Shi Q. Theoretical study of the electronic-vibrational coupling in the Qy states of the photosynthetic reaction center in purple bacteria. J Phys Chem B, 2012, 116: 1164–1171

    Article  CAS  Google Scholar 

  51. Breuer HP, Petruccione F. The Theory of Open Quantum Systems. New York: Oxford University Press, 2002

    Google Scholar 

  52. Chen H, Li S. Theoretical study toward understanding ultrafast internal conversion of excited 9H-adenine. J Phys Chem A, 2005, 109: 8443–8446

    Article  CAS  Google Scholar 

  53. Chen H, Li S. Ab initio study on deactivation pathways of excited 9H-guanine. J Chem Phys, 2006, 124: 154315

    Article  Google Scholar 

  54. Chen H, Li S. Theoretical study on the excitation energies of six tautomers of guanine: Evidence for the assignment of the rare tautomers. J Phys Chem A, 2006, 110: 12360–12362

    Article  CAS  Google Scholar 

  55. Chen H, Li S. Theoretical study on the photolysis mechanism of 2,3-diazabicyclo[2.2.2]oct-2-ene. J Am Chem Soc, 2005, 127: 13190–13199

    Article  CAS  Google Scholar 

  56. Chen H, Li S. CASPT2//CASSCF study on the photolysis mechanism of 2,3-diazabicyclo[2.1.1]hex-2-ene: α C-N versus β C-C cleavage. J Org Chem, 2006, 71: 9013–9022

    Article  CAS  Google Scholar 

  57. Chen H, Lai W, Shaik S. Multireference and multiconfiguration ab initio methods in heme-related systems: What have we learned so far? J Phys Chem B, 2011, 115: 1727–1742

    Article  CAS  Google Scholar 

  58. Shaik S, Chen H. Lessons on O2 and NO bonding to heme from ab initio multireference/multiconfiguration and DFT calculations. J Biol Inorg Chem, 2011, 16: 841–855

    Article  CAS  Google Scholar 

  59. Chen KJ, Zhang GL, Chen H, Yao JN, Danovich D, Shaik S. Spin-orbit coupling and outer-core correlation effects in Ir- and Pt-catalyzed C?H activation. J Chem Theory Comput, 2012, 8: 1641–1645

    Article  CAS  Google Scholar 

  60. Chen H, Ikeda-Saito M, Shaik S. Nature of the Fe-O2 bonding in oxy-myoglobin: Effect of the protein. J Am Chem Soc, 2008, 130: 14778–14790

    Article  CAS  Google Scholar 

  61. Chen H, Song JS, Lai W, Wu W, Shaik S. Multiple low-lying states for Compound I of P450cam and chloroperoxidase revealed from multireference ab initio QM/MM calculations. J Chem Theory Comput, 2010, 6: 940–953

    Article  CAS  Google Scholar 

  62. Shuai ZG, Xu W, Peng Q, Geng H. From electronic excited state theory to the property predictions of organic optoelectronic materials. Sci Chi Chem, 2013, 56(9): 1277–1284

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Q., Chen, H. Theoretical methods for excited state dynamics of molecules and molecular aggregates. Sci. China Chem. 56, 1271–1276 (2013). https://doi.org/10.1007/s11426-013-4914-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4914-9

Keywords

Navigation