Skip to main content
Log in

The complexity of G-protein coupled receptor-ligand interactions

  • Reviews
  • Special Topic Chemistry for Life Sciences
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The G-protein coupled receptors (GPCRs) play fundamental roles in the human biololgy and drug discovery. GPCRs function as signalling molecules that transduce extracellular signals into cells. The signalling transduction is generally triggered by interacting with ligands, including photons, ions, small organic compounds, peptides, proteins and lipids. In this review, we focus on interactions with diffusible ligands such as hormones and neurotransmitters. We discuss three aspects of the complexity of the GPCR-ligand interactions: functional selectivity of ligands, receptor subtype selectivity of ligands and orphan GPCRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tyndall JD, Sandilya R. GPCR agonists and antagonists in the clinic. Med Chem, 2005, 1: 405–421

    Article  CAS  Google Scholar 

  2. Lagerstrom MC, Schioth HB. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov, 2008, 7: 339–357

    Article  Google Scholar 

  3. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Marzio PD, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR. Identification of a major co-receptor for primary isolates of HIV-1. Nature, 1996, 381: 661–666

    Article  CAS  Google Scholar 

  4. Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: Functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science, 1996, 272: 872–877

    Article  CAS  Google Scholar 

  5. Gether U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev, 2000, 21: 90–113

    Article  CAS  Google Scholar 

  6. Ruffolo RRJ, Hollinger MA, Eds. G-Protein Coupled Transmembrane Signaling Mechanisms. Boca Raton: CRC Press, 1998

    Google Scholar 

  7. Gershengorn MC, Osman R. Minireview: Insights into G Protein-coupled receptor function using molecular models. Endocrinology, 2001, 142: 2–10

    Article  CAS  Google Scholar 

  8. Luttrell LM. Transmembrane signaling by G protein-coupled receptors. Methods Mol Biol, 2006, 332: 3–49

    CAS  Google Scholar 

  9. Maudsley S, Martin B, Luttrell LM. The origins of diversity and specificity in G protein-coupled receptor signaling. J Pharmacol Exp Ther, 2005, 314: 485–494

    Article  CAS  Google Scholar 

  10. Kolakowski LF Jr. GCRDb: A G-protein-coupled receptor database. Receptors Channels, 1994, 2: 1–7

    CAS  Google Scholar 

  11. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol, 2003, 63: 1256–1272

    Article  CAS  Google Scholar 

  12. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Trong IL, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M. Crystal structure of rhodopsin: A G protein-coupled receptor. Science, 2000, 289: 739–745

    Article  CAS  Google Scholar 

  13. Rosenbaum DM, Rasmussen SGF, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature, 2009, 459: 356–363

    Article  CAS  Google Scholar 

  14. Topiol S, Sabio M. X-ray structure breakthroughs in the GPCR transmembrane region. Biochemical Pharmacology, 2009, 78: 11–20

    Article  CAS  Google Scholar 

  15. Katritch V, Cherezov V, Stevens RC. Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol, 2013, 53: 531–556

    Article  CAS  Google Scholar 

  16. Stevens RC, Cherezov V, Katritch V, Abagyan R, Kuhn P, Rosen H, Wüthrich K. The GPCR Network: A large-scale collaboration to determine human GPCR structure and function. Nat Rev Drug Discov, 2013, 12: 25–34

    Article  CAS  Google Scholar 

  17. Hanson MA, Stevens RC. Discovery of new GPCR biology: One receptor structure at a time. Structure, 2009, 17: 8–14

    Article  CAS  Google Scholar 

  18. Audet M, Bouvier M. Insights into signaling from the beta2-adrenergic receptor structure. Nat Chem Biol, 2008, 4: 397–403

    Article  CAS  Google Scholar 

  19. Seifert R, Dove S. Functional selectivity of GPCR ligand stereoisomers: New pharmacological opportunities. Mol Pharmacol, 2009, 75: 13–18

    Article  CAS  Google Scholar 

  20. Woo AY, Wang TB, Zeng X, Zhu W, Abernethy DR, Wainer IW, Xiao RP. Stereochemistry of an agonist determines coupling preference of beta2-adrenoceptor to different G proteins in cardiomyocytes. Mol Pharmacol, 2009, 75: 158–165

    Article  CAS  Google Scholar 

  21. Liu JJ, Horst R, Katritch V, Stevens RC, Wüthrich K. Biased signaling pathways in beta2-adrenergic receptor characterized by 19F-NMR. Science, 2012, 335: 1106–1110

    Article  CAS  Google Scholar 

  22. Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB. Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther, 2007, 320: 1–13

    Article  CAS  Google Scholar 

  23. Zheng H, Loh HH, Law PY. Agonist-selective signaling of G protein-coupled receptor: Mechanisms and implications. IUBMB Life, 2010, 62: 112–119

    CAS  Google Scholar 

  24. Kenakin T. Drug efficacy at G protein-coupled receptors. Annu Rev Pharmacol Toxicol, 2002, 42: 349–379

    Article  CAS  Google Scholar 

  25. Galandrin S, Oligny-Longpre G, Bouvier M. The evasive nature of drug efficacy: Implications for drug discovery. Trends Pharmacol Sci, 2007, 28: 423–430

    Article  CAS  Google Scholar 

  26. Gilchrist A, Blackmer T. Modulating G-protein-coupled receptors: From traditional pharmacology to allosterics. Trends in Pharmacological Sciences, 2007, 28: 431–437

    Article  CAS  Google Scholar 

  27. Wang T, Duan Y. Binding modes of CCR5-targetting HIV entry inhibitors: Partial and full antagonists. J Mol Graph Model, 2008, 26: 1287–1295

    Article  CAS  Google Scholar 

  28. Wang T, Duan Y. HIV co-receptor CCR5: Structure and interactions with inhibitors. Infect Disord Drug Targets, 2009, 9: 279–288

    Article  CAS  Google Scholar 

  29. Vogel R, Ludeke S, Siebert F, Sakmar TP, Hirshfeld A, Sheves M. Agonists and partial agonists of rhodopsin: Retinal polyene methylation affects receptor activation. Biochemistry, 2006, 45: 1640–1652

    Article  CAS  Google Scholar 

  30. Seifert R, Wenzel-Seifert K, Gether U, Kobilka BK. Functional differences between full and partial agonists: Evidence for ligand-specific receptor conformations. J Pharmacol Exp Ther, 2001, 297: 1218–1226

    CAS  Google Scholar 

  31. Granier S, Kim S, Shafer AM, Ratnala VR, Fung JJ, Zare RN, Kobilka B. Structure and conformational changes in the C-terminal domain of the beta2-adrenoceptor: Insights from fluorescence resonance energy transfer studies. J Biol Chem, 2007, 282: 13895–13905

    Article  CAS  Google Scholar 

  32. Yao X, Parnot C, Deupi X, Ratnala VR, Swaminath G, Farrens D, Kobilka B. Coupling ligand structure to specific conformational switches in the beta2-adrenoceptor. Nat Chem Biol, 2006, 2: 417–422

    Article  CAS  Google Scholar 

  33. Li JH, Han SJ, Hamdan FF, Kim SK, Jacobson KA, Bloodworth LM, Zhang X, Wess J. Distinct structural changes in a G protein-coupled receptor caused by different classes of agonist ligands. J Biol Chem, 2007, 282: 26284–26293

    Article  CAS  Google Scholar 

  34. Li JH, Hamdan FF, Kim SK, Jacobson KA, Zhang X, Han SJ, Wess J. Ligand-specific changes in M3 muscarinic acetylcholine receptor structure detected by a disulfide scanning strategy. Biochemistry, 2008, 47: 2776–2788

    Article  CAS  Google Scholar 

  35. Vilardaga JP, Steinmeyer R, Harms GS, Lohse MJ. Molecular basis of inverse agonism in a G protein-coupled receptor. Nat Chem Biol, 2005, 1: 25–28

    Article  CAS  Google Scholar 

  36. Kobilka BK, Deupi X. Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci, 2007, 28: 397–406

    Article  CAS  Google Scholar 

  37. Hoffmann C, Zurn A, Bunemann M, Lohse MJ. Conformational changes in G-protein-coupled receptors-the quest for functionally selective conformations is open. Br J Pharmacol, 2008, 153: S358–366

    Article  CAS  Google Scholar 

  38. Hill SJ. G-protein-coupled receptors: Past, present and future. Br J Pharmacol, 2006, 147: S27–37

    Article  CAS  Google Scholar 

  39. Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, Rasmussen SG, Choi HJ, Devree BT, Sunahara RK, Chae PS, Gellman SH, Dror RO, Shaw DE, Weis WI, Caffrey M, Gmeiner P, Kobilka BK. Structure and function of an irreversible agonist-beta2 adrenoceptor complex. Nature, 2011, 469: 236–240

    Article  CAS  Google Scholar 

  40. Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK. Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature, 2011, 469: 175–180

    Article  CAS  Google Scholar 

  41. Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao ZG, Cherezov V, Stevens RC. Structure of an agonist-bound human A2A adenosine receptor. Science, 2011, 332: 322–327

    Article  CAS  Google Scholar 

  42. Baker JG. The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and beta3 adrenoceptors. Br J Pharmacol, 2005, 144: 317–322

    Article  CAS  Google Scholar 

  43. Ongini E, Dionisotti S, Gessi S, Irenius E, Fredholm BB. Comparison of CGS 15943, ZM 241385 and SCH 58261 as antagonists at human adenosine receptors. Naunyn-Schmiedeberg’s Archives of Pharmacology, 1999, 359: 7–10

    Article  CAS  Google Scholar 

  44. Hoffmann C, Leitz MR, Oberdorf-Maass S, Lohse MJ, Klotz KN. Comparative pharmacology of human beta-adrenergic receptor subtypes—Characterization of stably transfected receptors in CHO cells. Naunyn Schmiedebergs Arch Pharmacol, 2004, 369: 151–159

    Article  CAS  Google Scholar 

  45. Strosberg AD. Structure, function and regulation of the three betaadrenoceptor subtypes. In: Ruffolo RRJ, Hollinger MA, Eds. G-Protein Coupled Transmembrane Signaling Mechanisms. Boca Raton: CRC Press, 1998

    Google Scholar 

  46. Steinberg SF. The Molecular basis for distinct beta-adrenergic receptor subtype actions in cardiomyocytes. Circ Res, 1999, 85: 1101–1111

    Article  CAS  Google Scholar 

  47. Frielle T, Daniel KW, Caron MG, Lefkowitz RJ. Structural basis of beta-adrenergic receptor subtype specificity studied with chimeric beta 1/beta 2-adrenergic receptors. Proc Natl Acad Sci USA, 1988, 85: 9494–9498

    Article  CAS  Google Scholar 

  48. Sugimoto Y, Fujisawa R, Tanimura R, Lattion AL, Cotecchia S, Tsujimoto G, Nagao T, Kurose H. beta(1)-Selective agonist (−)-1-(3,4-dimethoxyphenetylamino)-3-(3,4-dihydroxy)-2-propanol [(−)-RO363] differentially interacts with key amino acids responsible for beta(1)-selective binding in resting and active states. J Pharmacol Exp Ther, 2002, 301: 51–58

    Article  CAS  Google Scholar 

  49. Marullo S, Emorine LJ, Strosberg AD, Delavier-Klutchko C. Selective binding of ligands to beta 1, beta 2 or chimeric beta 1/beta 2-adrenergic receptors involves multiple subsites. Embo J, 1990, 9: 1471–1476

    CAS  Google Scholar 

  50. Isogaya M, Sugimoto Y, Tanimura R, Tanaka R, Kikkawa H, Nagao T, Kurose H. Binding pockets of the beta 1- and beta 2-adrenergic receptors for subtype-selective agonists. Mol Pharmacol, 1999, 56: 875–885

    CAS  Google Scholar 

  51. Isogaya M, Yamagiwa Y, Fujita S, Sugimoto Y, Nagao T, Kurose H. Identification of a key amino acid of the beta 2-adrenergic receptor for high affinity binding of salmeterol. Mol Pharmacol, 1998, 54: 616–622

    CAS  Google Scholar 

  52. Kikkawa H, Isogaya M, Nagao T, Kurose H. The role of the seventh transmembrane region in high affinity binding of a beta 2-selective agonist TA-2005. Mol Pharmacol, 1998, 53: 128–134

    CAS  Google Scholar 

  53. Alberts GL, Pregenzer JF, Im WB. Identification of transmembrane regions critical for ligand binding to the human D3 dopamine receptor using various D3/D1 transmembrane chimeras. Mol Pharmacol, 1998, 54: 379–388

    CAS  Google Scholar 

  54. Schioth HB, Yook P, Muceniece R, Wikberg JE, Szardenings M. Chimeric melanocortin MC1 and MC3 receptors: Identification of domains participating in binding of melanocyte-stimulating hormone peptides. Mol Pharmacol, 1998, 54: 154–161

    CAS  Google Scholar 

  55. Kobayashi T, Kiriyama M, Hirata T, Hirata M, Ushikubi F, Narumiya S. Identification of domains conferring ligand binding specificity to the prostanoid receptor. J Biol Chem, 1997, 272: 15154–15160

    Article  CAS  Google Scholar 

  56. Leeb T, Mathis SA, Leeb-Lundberg LMF. The sixth transmembrane domains of the human B1 and B2 bradykinin receptors are structurally compatible and involved in discriminating between subtype-selective agonists. J Biol Chem, 1997, 272: 311–317

    Article  CAS  Google Scholar 

  57. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF. Structure of a beta1-adrenergic G-protein-coupled receptor. Nature, 2008, 454: 486–491

    Article  CAS  Google Scholar 

  58. Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science, 2007, 318: 1266–1273

    Article  CAS  Google Scholar 

  59. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC. High-resolution crystal structure of an engineered human beta2-adrenergic G protein coupled receptor. Science, 2007, 318: 1258–1265

    Article  CAS  Google Scholar 

  60. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF. Structure of a beta1-adrenergic G-protein-coupled receptor. Nature, 2008, 454: 486–491

    Article  CAS  Google Scholar 

  61. Jager D, Schmalenbach C, Prilla S, Schrobang J, Kebig A, Sennwitz M, Heller E, Tränkle C, Holzgrabe U, Höltje HD, Mohr K. Allosteric small molecules unveil a role of an extracellular E2/transmembrane helix 7 junction for G protein-coupled receptor activation. J Biol Chem, 2007, 282: 34968–34976

    Article  Google Scholar 

  62. Thomas RL, Mistry R, Langmead CJ, Wood MD, Challiss RA. G protein coupling and signaling pathway activation by M1 muscarinic acetylcholine receptor orthosteric and allosteric agonists. J Pharmacol Exp Ther, 2008, 327: 365–374

    Article  CAS  Google Scholar 

  63. Antony J, Kellershohn K, Mohr-Andra M, Kebig A, Prilla S, Muth M, Heller E, Disingrini T, Dallanoce C, Bertoni S, Schrobang J, Tränkle C, Kostenis E, Christopoulos A, Höltje HD, Barocelli E, De Amici M, Holzgrabe U, Mohr K. Dualsteric GPCR targeting: A novel route to binding and signaling pathway selectivity. Faseb J, 2009, 23: 442–450

    Article  CAS  Google Scholar 

  64. Avlani VA, Gregory KJ, Morton CJ, Parker MW, Sexton PM, Christopoulos A. Critical role for the second extracellular loop in the binding of both orthosteric and allosteric G protein-coupled receptor ligands. J Biol Chem, 2007, 282: 25677–25686

    Article  CAS  Google Scholar 

  65. Klco JM, Wiegand CB, Narzinski K, Baranski TJ. Essential role for the second extracellular loop in C5a receptor activation. Nat Struct Mol Biol, 2005, 12: 320–326

    Article  CAS  Google Scholar 

  66. Bokoch M, Zou Y, Rasmussen S, Liu C, Nygaard R, Rosenbaum DM, Fung JJ, Choi HJ, Thian FS, Kobilka TS, Puglisi JD, Weis WI, Pardo L, Prosser RS, Mueller L, Kobilka BK. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature, 2010, 463: 108–112

    Article  CAS  Google Scholar 

  67. Chien EY, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V, Stevens RC. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science, 2010, 330: 1091–1995

    Article  CAS  Google Scholar 

  68. Wang T, Duan Y. Chromophore channeling in the G-protein coupled receptor rhodopsin. J Am Chem Soc, 2007, 129: 6970–6971

    Article  CAS  Google Scholar 

  69. Wang T, Duan Y. Retinal release from opsin in molecular dynamics simulations. J Mol Recognition, 2011, 24: 350–358

    Article  CAS  Google Scholar 

  70. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK. Crystal structure of the human beta(2) adrenergic G-protein-coupled receptor. Nature, 2007, 450: 383–387

    Article  CAS  Google Scholar 

  71. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC. High-resolution crystal structure of an engineered human beta2-adrenergic G protein coupled receptor. Science, 2007, 318: 1258–1265

    Article  CAS  Google Scholar 

  72. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, Velasquez J, Kuhn P, Stevens RC. A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure, 2008, 16: 897–905

    Article  CAS  Google Scholar 

  73. Wang T, Duan Y. Ligand entry and exit pathways in the beta2-adrenergic receptor. J Mol Biol, 2009, 392: 1102–1115

    Article  CAS  Google Scholar 

  74. Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE, Mortrud MT, Brown A, Rodriguez SS, Weller JR, Wright AC, Bergmann JE, Gaitanaris GA. The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci U S A, 2003, 100: 4903–4908

    Article  CAS  Google Scholar 

  75. Fredriksson R, Schioth HB. The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol Pharmacol, 2005, 67: 1414–1425

    Article  CAS  Google Scholar 

  76. Civelli O, Saito Y, Wang Z, Nothacker HP, Reinscheid RK. Orphan GPCRs and their ligands. Pharmacology & Therapeutics, 2006, 110: 525–532

    Article  CAS  Google Scholar 

  77. Chung S, Funakoshi T, Civelli O. Orphan GPCR research. Br J Pharmacol, 2008, 153: S339–S346

    Article  CAS  Google Scholar 

  78. Civelli O. Orphan GPCRs and neuromodulation. Neuron, 2012, 76: 12–21

    Article  CAS  Google Scholar 

  79. Civelli O. GPCR deorphanizations: The novel, the known and the unexpected transmitters. Trends Pharmacol Sci, 2005, 26: 15–19

    Article  CAS  Google Scholar 

  80. Kristiansen K. Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: Molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther, 2004, 103: 21–80

    Article  CAS  Google Scholar 

  81. Levoye A, Dam J, Ayoub MA, Guillaume JL, Jockers R. Do orphan G-protein-coupled receptors have ligand-independent functions? New insights from receptor heterodimers. EMBO Rep, 2006, 7: 1094–1098

    Article  CAS  Google Scholar 

  82. Levoye A, Jockers R. Alternative drug discovery approaches for orphan GPCRs. Drug Discov Today, 2008, 13: 52–58

    Article  CAS  Google Scholar 

  83. Kontijevskis A, Petrovska R, Mutule I, Uhlen S, Komorowski J, Prusis P, Wikberg JE. Proteochemometric analysis of small cyclic peptides’ interaction with wild-type and chimeric melanocortin receptors. Proteins, 2007, 69: 83–96

    Article  CAS  Google Scholar 

  84. Lapinsh M, Prusis P, Uhlen S, Wikberg JE. Improved approach for proteochemometrics modeling: application to organic compound—amine G protein-coupled receptor interactions. Bioinformatics, 2005, 21: 4289–4296

    Article  CAS  Google Scholar 

  85. Lapinsh M, Prusis P, Petrovska R, Uhlen S, Mutule I, Veiksina S, Wikberg JE. Proteochemometric modeling reveals the interaction site for Trp9 modified alpha-MSH peptides in melanocortin receptors. Proteins, 2007, 67: 653–660

    Article  CAS  Google Scholar 

  86. Strombergsson H, Prusis P, Midelfart H, Lapinsh M, Wikberg JE, Komorowski J. Rough set-based proteochemometrics modeling of G-protein-coupled receptor-ligand interactions. Proteins, 2006, 63: 24–34

    Article  Google Scholar 

  87. Bock JR, Gough DA. Virtual screen for ligands of orphan G protein-coupled receptors. J Chem Inf Model, 2005, 45: 1402–1414

    Article  CAS  Google Scholar 

  88. Jiang Z, Zhou Y. Using silico methods predicting ligands for orphan GPCRs. Curr Protein Pept Sci, 2006, 7: 459–464

    Article  CAS  Google Scholar 

  89. Colette J, Ave E, Grenier-Boley B, Coquel AS, Lesellier K, Puget K. Bioinformatics-based discovery and identification of new biologically active peptides for GPCR deorphanization. J Pept Sci, 2007, 13: 568–574

    Article  CAS  Google Scholar 

  90. Jacob L, Hoffmann B, Stoven V, Vert JP. Virtual screening of GPCRs: An in silico chemogenomics approach. BMC Bioinformatics, 2008, 9: 363

    Article  Google Scholar 

  91. Wang T, Duan Y. Identification of G-protein coupled receptors and ligands interactions on a chemo-genomic scale. Computers and Applied Chemistry 2009, 26: 689–696

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T. The complexity of G-protein coupled receptor-ligand interactions. Sci. China Chem. 56, 1344–1350 (2013). https://doi.org/10.1007/s11426-013-4911-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4911-z

Keywords

Navigation