Skip to main content
Log in

Fabrication and applications of the protein patterns

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Protein has been widely used for fabricating patterned structures since it is one of the most important macromolecules in living organisms, and protein patterns possess potential applications in many fields such as medical diagnosis, tissue engineering, biosensors, and medical screening. At present, there are two fashions to fabricate protein patterns: one is grafting the protein to the microstructure which is prepared by micro-fabrication techniques; the other one is achieving the patterned protein structures directly. Here we provide an overview on current status of the fabrication techniques and the applications of the protein patterns, and then give an outlook on the development of the fabrication techniques and the prospective applications of the protein patterns in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Menard E, Meitl MA, Sun YG, Park JU, Shir DJL, Nam YS, Jeon S, Rogers JA. Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem Rev, 2007, 107: 1117–1160

    Article  CAS  Google Scholar 

  2. Campo AD, Arzt E. Fabrication approaches for generating complex micro- and nanopatterns on polymeric surfaces. Chem Rev, 2008, 108: 911–945

    Article  Google Scholar 

  3. Whitesides GM. The origins and the future of microfluidics. Nature, 2006, 442: 368–373

    Article  CAS  Google Scholar 

  4. Bettinger CJ, Langer R, Borenstein JT. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew Chem Int Ed, 2009, 48: 5406–5415

    Article  CAS  Google Scholar 

  5. El-Ali J, Sorger PK, Jensen KF. Cells on chips. Nature, 2006, 442: 403–411

    Article  CAS  Google Scholar 

  6. Nie Z, Kumacheva E. Patterning surfaces with functional polymers. Nat Mater, 2008, 7: 277–290

    Article  CAS  Google Scholar 

  7. Shiu JY, Chen PL. Addressable protein patterning via switchable superhydrophobic microarrays. Adv Funct Mater, 2007, 17: 2680–2686

    Article  CAS  Google Scholar 

  8. Dubey M, Emoto K, Takahashi H, Castner DG, Grainger W. Affinity-based protein surface pattern formation by ligand self-selection from mixed protein solutions. Adv Funct Mater, 2009, 19: 3046–3055

    Article  CAS  Google Scholar 

  9. Waldbaur A, Waterkotte B, Schmita K, Rapp BE. Maskless projection lithography for the fast and flexible generation of grayscale protein patterns. Small, 2012, 8: 1570–1578

    Article  CAS  Google Scholar 

  10. Xia Y, Whitesides GM. Soft lithography. Annu Rev Mater Sci, 1998, 28: 153–184

    Article  CAS  Google Scholar 

  11. Mrksich M, Whitesides GM. Using self-assembled monolayers to understand the interaction of man-made surfaces with proteins and cells. Annu Rev Biophys Biomol Struct, 1996, 25: 55–78

    Article  CAS  Google Scholar 

  12. Mrksich M, Dike LE, Tien J, Ingber DE, Whitesides GM. Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Exp Cell Res, 1997, 235: 305–313

    Article  CAS  Google Scholar 

  13. Kumar A, Whitesidesa GM. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching. Appt Phys Lett, 1993, 63: 2002–2004

    Article  CAS  Google Scholar 

  14. Renault JP, Bernard A, Bietsch A, Michel B, Bosshard HR, Delamarche E, Kreiter M, Hecht B, Wild UP. Fabrication arrays of single protein molecules on glass using microcontact printing. J Phys Chem B, 2002, 107: 703–711

    Article  Google Scholar 

  15. Bernard A, Renault JP, Michel B, Bosshard HR, Delamarche E. Microcontact printing of proteins. Adv Mater, 2000, 12: 1067–1070

    Article  CAS  Google Scholar 

  16. Feng CL, Embrechts A, Bredebusch I, Schnekenburger J, Domschke W, Vancso GJ, Schönherr H. Reactive microcontact printing on block copolymer films: Exploiting chemistry in microcontacts for sub-micrometer patterning of biomolecules. Adv Mater, 2007, 19: 286–290

    Article  CAS  Google Scholar 

  17. Michel R, Reviakine I, Sutherland D, Fokas C, Csucs G, Danuser G, Spencer ND, Textor M. A novel approach to produce biologically relevant chemical patterns at the nanometer scale: Selective molecular assembly patterning combined with colloidal lithography. Langmuir, 2002, 18: 8580–8586

    Article  CAS  Google Scholar 

  18. Agheli H, Malmström J, Larsson EM, Textor M, Sutherland DS. Large area protein nanopatterning for biological applications. Nano Lett, 2006, 6: 1165–1171

    Article  CAS  Google Scholar 

  19. Cai YG, Ocko BM. Large-scale fabrication of protein nanoarrays based on nanosphere lithography. Langmuir, 2005, 21: 9274–9279

    Article  CAS  Google Scholar 

  20. Blättler TM, Binkert A, Zimmermann M, Textor M, Vörös J, Reimhult E. From particle self-assembly to functionalized sub-micron protein patterns. Nanotechnology, 2008, 19: 075301

    Article  Google Scholar 

  21. Valsesia A, Colpo P, Meziani T, Lisboa P, Lejeune M, Rossi F. Immobilization of antibodies on biosensing devices by nanoarrayed self-assembled monolayers. Langmuir, 2006, 22: 1763–1767

    Article  CAS  Google Scholar 

  22. Valsesia A, Colpo P, Meziani T, Bretagnol F, Lejeune M, Rossi F, Bouma A, Garcia-Parajo. Selective immobilization of protein clusters on polymeric nanocraters. Adv Funct Mater, 2006, 16: 1242–1246

    Article  CAS  Google Scholar 

  23. Singh G, Pillai S, Arpanaei A, Kingshott P. Highly ordered mixed protein patterns over large areas from self-assembly of binary colloids. Adv Mater, 2011, 23: 1519–1523

    Article  CAS  Google Scholar 

  24. Li YF, Zhang JH, Fang LP, Jiang LM, Liu WD, Wang TQ, Cui LY, Sun HC, Yang B. Polymer brush nanopatterns with controllable features for protein pattern applications. J Mater Chem, 2012, 22: 25116–25122

    Article  CAS  Google Scholar 

  25. Li YF, Zhang JH, Liu WD, Li DW, Fang LP, Sun HC, Yang B. Hierarchical polymer brush nanoarrays: A versatile way to prepare multiscale patterns of proteins. ACS Appl Mater Interfaces, 2013, 5: 2126–2132

    Article  CAS  Google Scholar 

  26. Hoff JD, Cheng LJ, Meyhöfer E, Guo LJ, Hunt AJ. Nanoscale protein patterning by imprint lithography. Nano Lett, 2004, 4: 853–857

    Article  CAS  Google Scholar 

  27. Falconnet D, Pasqui D, Park S, Eckert R, Schift H, Gobrecht J, Barbucci R, Textor M. A novel approach to produce protein nanopatterns by combining nanoimprint lithography and molecular self-assembly. Nano Lett, 2004, 4: 1909–1914

    Article  CAS  Google Scholar 

  28. Broers AN, Hoole ACF, Ryan JM. Electron beam lithography-Resolution limits. Microelectron Eng, 1996, 32: 131–142

    Article  CAS  Google Scholar 

  29. Christman KL, Schopf E, Broyer RM, Li RC, Chen Y, Maynard HD. Positioning multiple proteins at the nanoscale with electron beam cross-linked functional polymers. J Am Chem Soc, 2009, 131: 521–527

    Article  CAS  Google Scholar 

  30. Stephanopoulos N, Solis EOP, Stephanopoulos G. Nanoscale process systems engineering: Toward molecular factories, synthetic cells, and adaptive devices. AIChE J, 2005, 51: 1858–1869

    Article  CAS  Google Scholar 

  31. Kaehr B, Allen R, Javier DJ, Currie J, Shear JB. Guiding neuronal development with in situ microfabrication. Proc Natl Acad Sci USA, 2004, 101: 16104–16108

    Article  CAS  Google Scholar 

  32. Kaehr B, Shear JB. Mask-directed multiphoton lithography. J Am Chem Soc, 2007, 129: 1904–1905

    Article  CAS  Google Scholar 

  33. Hill RT, Lyon JL, Allen R, Stevenson KJ, Shear JB. Microfabrication of three-dimensional bioelectronic architectures. J Am Chem Soc, 2005, 127: 10707–10711

    Article  CAS  Google Scholar 

  34. Schlapak R, Danzberger J, Haselgrubler T, Hinterdorfer P, Schäffler F, Howorka S. Painting with biomolecules at the nanoscale: Biofunctionalization with tunable surface densities. Nano Lett, 2012, 12: 1983–1989

    Article  CAS  Google Scholar 

  35. Piner RD, Zhu J, Xu F, Hong S, Mirkin CA. “Dip-pen” nanolithography. Science, 1999, 283: 661–663

    Article  CAS  Google Scholar 

  36. Hong S, Zhu J, Mirkin CA. Multiple ink nanolithography: Toward a multiple-pen nano-plotter. Science, 1999, 286: 523–525

    Article  CAS  Google Scholar 

  37. Hong S, Mirkin CA. A Nanoplotter with both parallel and serial writing capabilities. Science, 2000, 288: 1808–1811

    Article  CAS  Google Scholar 

  38. Lee KB, Park SJ, Mirkin CA, Smith JC, Mrksich M. Protein nanoarrays generated by dip-pen nanolithography. Science, 2002, 295: 1702–1705

    Article  CAS  Google Scholar 

  39. Lim LH, Mirkin CA. Electrostatically driven dip-pen nanolithography of conducting polymers. Adv Mater, 2002, 14: 1474–1477

    Article  CAS  Google Scholar 

  40. Salazar RB, Shovsky A, Schönherr H, Vancso GJ. Dip-pen nanolithography on (bio) reactive monolayerand block-copolymer platforms: Deposition of lines of single macromolecules. Small, 2006, 2: 1274–1282

    Article  CAS  Google Scholar 

  41. Maynor BW, Filocamo SF, Grinstaff MW, Liu J. Direct-writing of polymer nanostructures: Poly (thiophene) nanowires on semiconducting and insulating surfaces. J Am Chem Soc, 2002, 124: 522–523

    Article  CAS  Google Scholar 

  42. Salaita K, Wang YH, Fragala J, Vega RA, Liu C, Mirkin CA. Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays. Angew Chem Int Ed, 2006, 45: 7220–7223

    Article  CAS  Google Scholar 

  43. Vega RA, Shen CK, Maspoch D, Robach JG, Lamb RA, Mirkin CA. Monitoring single-cell infectivity from virus-particle nanoarrays fabricated by parallel dip-pen nanolithography. Small, 2007, 3: 1482–1485

    Article  CAS  Google Scholar 

  44. Lee SW, Oh BK, Sanedrin RG, Salaita K, Fujigaya T, Mirkin CA. Biologically active protein nanoarrays generated using parallel dip-pen nanolithography. Adv Mater, 2006, 18: 1133–1136

    Article  CAS  Google Scholar 

  45. Lee KB, Park SJ, Mirkin CA, Smith JC, Mrksich M. Protein nanoarrays generated by dip-pen nanolithography. Science, 2002, 295: 1702–1705

    Article  CAS  Google Scholar 

  46. Zheng ZJ, Daniel WL, Giam LR, Huo FW, Senesi AJ, Zheng GF, Mirkin CA. Multiplexed protein arrays enabled by polymer pen lithography: Addressing the inking challenge. Angew Chem, 2009, 121: 7762–7765

    Article  Google Scholar 

  47. Wu CC, Xu HP, Otto G, Reinhoudt DN, Lammertink RGH, Huskens J, Subramaniam V, Velders AH. Porous multilayer-coated afm tips for dip-pen nanolithography of proteins. J Am Chem Soc, 2009, 131: 7526–7527

    Article  CAS  Google Scholar 

  48. Bellido E, Miduel RD, Ruiz-Molina D, Lostao A, Maspoch D. Controlling the number of proteins with dip-pen nanolithography. Adv Mater, 2009, 22: 352–355

    Article  Google Scholar 

  49. Shamansky LM, Davis CB, Stuart JK, Kuhr WG. Immobilization and detection of DNA on microfluidic chips. Talanta, 2001, 55: 909–918

    Article  CAS  Google Scholar 

  50. Lee NY, Lim JR, Kim YS. Selective patterning and immobilization of biomolecules within precisely-defined micro-reservoirs. Biosens Bioelectron, 2006, 21: 2188–2193

    Article  CAS  Google Scholar 

  51. Fiddes LK, Chan HKC, Lau B, Kumacheva E, Wheeler AR. Durable, region-specific protein patterning in microfluidic channels. Biomaterials, 2010, 31: 315–320

    Article  CAS  Google Scholar 

  52. Nakajima H, Ishino S, Masuda H, Nakagama T, Shimosaka T, Uchiyama K. Photochemical immobilization of protein on the inner wall of a microchannel and Its application in a glucose sensor. Anal Chim Acta, 2006, 562: 103–109

    Article  CAS  Google Scholar 

  53. Walter G, Bussow K, Cahill D, Lueking A, Lehrach H. Protein arrays for gene expression and molecular interaction screening. Curr Opin Microbiol, 2000, 3: 298–302

    Article  CAS  Google Scholar 

  54. Khademhosseini A, Suh KY, Jon S, Eng G, Yeh J, Chen GJ, Langer R. A soft lithographic approach to fabricate patterned microfluidic channels. Anal Chem, 2004, 76: 3675–3681

    Article  CAS  Google Scholar 

  55. Kirby BJ, Wheeler AR, Zare RN, Fruetel JA, Shepodd TJ. Programmable modification of cell adhesion and zeta potential in silica mi crochips. Lab Chip, 2003, 3: 5–10

    Article  CAS  Google Scholar 

  56. Patrito N, McCague C, Chiang S, Norton PR, Petersen NO. Photolithographically patterned surface modification of poly (dimethylsiloxane) via UV-initiated graft polymerization of acrylates. Langmuir, 2006, 22: 3453–3455

    Article  CAS  Google Scholar 

  57. Takayama S, McDonald JC, Ostuni E, Liang MN, Kenis PJA, Ismagilov RF, Whitesides GM. Patterning cells and their environments using multiple laminar fluid flows in capillary networks. Proc Natl Acad Sci USA, 1999, 96: 5545–5548

    Article  CAS  Google Scholar 

  58. Fricke R, Zentis PD, Rajappa LT, Hofmann B, Banzet M, Offenhausser A, Meffert SH. Axon guidance of rat cortical neurons by microcontact printed gradients. Biomaterials, 2011, 32: 2070–2076

    Article  CAS  Google Scholar 

  59. Didar TF, Tabrizian M. Adhesion based detection, sorting and enrichment of cells in microfluidic Lab-on-Chip devices. Lab Chip, 2010, 10: 3043–3053

    Article  CAS  Google Scholar 

  60. Saliba AE, Saias L, Psychari E, Minc N, Simon D, Bidard FC, Mathiot C, Pierga JY, Fraisier V, Salamero J, Saada V, Farace F, Vielh P, Malaquin L, Viovy JL. Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays. Proc Natl Acad Sci USA, 2010, 107: 14524–14529

    Article  CAS  Google Scholar 

  61. Wu P, Castner DG, Grainger DWJ. Diagnostic devices as biomaterials: A review of nucleic acid and protein microarray surface performance issues. Biomater Sci, PolymerEd, 2008, 19: 725–753

    Article  CAS  Google Scholar 

  62. Barbulovic-Nad I, Lucente M, Sun Y, Zhang M, Wheeler AR, Bussmann M. Bio-microarray fabrication techniques: A review. Crit Rev Biotechnol, 2006, 26: 237–259

    Article  CAS  Google Scholar 

  63. Didar TF, Foudeh AM, Tabrizian M. Patterning multiplex protein microarrays in a single microfluidic channel. Anal Chem, 2012, 84: 1012–101

    Article  CAS  Google Scholar 

  64. Seo HS, Kim SE, Park JS, Lee JH, Yang KY, Lee H, Lee KE, Han SS, Lee J. A three-dimensional nanostructured array of protein nanoparticles. Adv Funct Mater, 2010, 20: 4055–4061

    Article  CAS  Google Scholar 

  65. Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science, 2003, 301: 1882–1884

    Article  CAS  Google Scholar 

  66. Park SH, Yin P, Liu Y, Reif JH, LaBean TH, Yan H. Programmable DNA self-assemblies for nanoscale organization of ligands and proteins. Nano Lett, 2005, 5: 729–733

    Article  CAS  Google Scholar 

  67. Cohen JD, Sadowski JP, Dervan PB. Programming multiple protein patterns on a single DNA nanostructure. J Am Chem Soc, 2007, 130: 402–403

    Article  Google Scholar 

  68. MacBeath G. Protein microarrays and proteomics. Nat Genet, 2002, 32: 526–532

    Article  CAS  Google Scholar 

  69. Schweitzer B, Robert S, Grimwade B, Shao WP, Wang MJ, Fu Q, Shu QP, Laroche I, Zhou ZM, Tchernev VT, Christiansen J, Velleca M, Kingsmore SF. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat Biotechnol, 2002, 20: 359–365

    Article  CAS  Google Scholar 

  70. Gaster RS, Hall DA, Wang SX. Autoassembly protein arrays for analyzing antibody cross-reactivity. Nano Lett, 2011, 11: 2579–2583

    Article  CAS  Google Scholar 

  71. Hall DA, Gaster RS, Lin T, Osterfeld SJ, Han S, Muemann B, Wang SX. GMR biosensor arrays: A system perspective. Biosens Bioelectron, 2010, 25: 2051–2057

    Article  CAS  Google Scholar 

  72. Lausted C, Hu Z, Hood L. Quantitative serum proteomics from surface plasmon resonance imaging. Mol Cell Proteomics, 2008, 7: 2464–2474

    Article  CAS  Google Scholar 

  73. Valsesia A, Colpo P, Mannelli I, Mornet S, Bretagnol F, Ceccone G, Rossi F. Use of nanopatterned surfaces to enhance immunoreaction efficiency. Anal Chem, 2008, 80: 1418–1424

    Article  CAS  Google Scholar 

  74. Lee KB, Kim EY, Mirkin CA, Wolinsky SM. The use of nanoarrays for highly sensitive and selective detection of Human Immunodeficiency Virus Type 1 in plasma. Nano Lett, 2004, 4: 1869–1872

    Article  CAS  Google Scholar 

  75. Romer LH, Birukov KG, Garcia JGN. Focal adhesions: Paradigm for a signaling nexus. Circ Res, 2006, 98: 606–616

    Article  CAS  Google Scholar 

  76. Whitesides GM, Ostuni E, Takayama S, Jiang XY, Ingber DE. Soft lithography in biology and biochemistry. Annu Rev Biomed Eng, 2001, 3: 335–373

    Article  CAS  Google Scholar 

  77. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science, 1997, 276: 1425–1428

    Article  CAS  Google Scholar 

  78. Pesen D, Haviland DB. Modulation of cell adhesion complexes by surface protein patterns. ACS Appl Mater Interfaces, 2009, 1: 543–548

    Article  CAS  Google Scholar 

  79. You J, Yoshida A, Heo JS, Kim HS, Kim HO, Tamada K, Kim S. Protein coverage on polymer nanolayers leading to mesenchymal stem cell patterning. Phys Chem Chem Phys, 2011, 13: 17625–17632

    Article  CAS  Google Scholar 

  80. Zheng T, Peelen D, Smith LMJ. Lectin arrays for profiling cell surface carbohydrate expression. J Am Chem Soc, 2005, 127: 9982–9983

    Article  CAS  Google Scholar 

  81. Malmstrom J, Lovmand J, Kristensen S, Sundh M, Duch M, Sutherland DS. Focal complex maturation and bridging on 200 nm vitronectin but not fibronectin patches reveal different mechanisms of focal adhesion formation. Nano Lett, 2011, 11: 2264–2271

    Article  CAS  Google Scholar 

  82. Kim DH, Seo CH, Han K, Kwon KW, Levchenko A, Suh KY. Guided cell migration on microtextured substrates with variable local density and anisotropy. Adv Funct Mater, 2009, 19: 1579–1586

    Article  CAS  Google Scholar 

  83. Stamou D, Duschl C, Delamarche E, Vogel H. Self-assembled microarrays of attoliter molecular vessels. Angew Chem Int Ed, 2003, 42: 5580–5583

    Article  CAS  Google Scholar 

  84. Scholl M, Sprössler C, Denyer M, Krause M, Nakajima K, Maelicke A, Knoll W, Offenhäusser A. Ordered networks of rat hippocampal neurons attached to silicon oxide surfaces. J Neurosci Methods, 2000, 104: 65–75

    Article  CAS  Google Scholar 

  85. Oliva AA, James CD, Kingman CE, Craighead HG, Banker GA. Patterning axonal guidance molecules using a novel strategy for microcontact printing. Neurochem Res, 2003, 28: 1639–1648

    Article  CAS  Google Scholar 

  86. Kumar G, Wang YC, Co C, Ho CC. Spatially controlled cell engineering on biomaterials using polyelectrolytes. Langmuir, 2003, 19: 10550–10556

    Article  CAS  Google Scholar 

  87. Lin CC, Co CC, Ho CC. Micropatterning proteins and cells on polylactic acid and poly (lactide-co-glycolide). Biomaterials, 2005, 26: 3655–3662

    Article  CAS  Google Scholar 

  88. Théry M, Racine V, Pépin A, Piel M, Chen Y, Sibarita JB, Bornens M. The extracellular matrix guides the orientation of the cell division axis. Nat Cell Biol, 2005, 7: 947–953

    Article  Google Scholar 

  89. Thery M, Racine V, Piel M, Pépin A, Dimitrov A, Chen Y, Sibarita JB. Anisotropy of cell adhesive microenvironment governs cell internal organizationan d orientation of polarity. Proc Nat Acad Sci USA, 2006, 103: 19771–19776

    Article  CAS  Google Scholar 

  90. Loeffler F, Schirwitz C, Wagner J, Koenig K, Maerkle F, Gloria Torralba, Hausmann M, Bischoff FR, Nesterov-Mueller A, Breitling F. Biomolecule arrays using functional combinatorial particle patterning on microchips. Adv Funct Mater, 2012, 22: 2503–2508

    Article  CAS  Google Scholar 

  91. Borteha HM, Ferrell NJ, Butlerc RT, Olesikd SV, Hansford DJ. Peptide-induced patterning of gold nanoparticle thin films. Appl Surf Sci, 2011, 258: 230–235

    Article  Google Scholar 

  92. An ZH, Lee S, Oppenheimer H, Wesson JA, Ward MD. Attachment of calcium oxalate monohydrate crystals on patterned surfaces of proteins and lipid bilayers. J Am Chem Soc, 2010, 132: 13188–13190

    Article  CAS  Google Scholar 

  93. Chan WCW, Nie SM. Quantum dot bioconjugates forc ultrasensitive nonisotopic detection. Science, 1998, 281: 2016–2018

    Article  CAS  Google Scholar 

  94. Tian JD, Gong H, Sheng NJ, Zhou XC, Gulari E, Gao XL, Church G. Accurate multiplex gene synthesis from programmable DNA microchips. Nature, 2004, 432: 1050–1054

    Article  CAS  Google Scholar 

  95. Mao CB, Solis DJ, Reiss BD, Kottmann ST, Sweeney RY, Hayhurst A, Georgiou G, Iverson B, Belcher AM. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science, 2004, 303: 213–217

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bai Yang.

Additional information

Contributed by Prof. YANG Bai (Jilin University)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Li, Y. & Yang, B. Fabrication and applications of the protein patterns. Sci. China Chem. 56, 1087–1100 (2013). https://doi.org/10.1007/s11426-013-4909-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4909-6

Keywords

Navigation