Skip to main content
Log in

Theoretical study of low-lying excited states of molecular aggregates. I. Development of linear-scaling TD-DFT

  • Perspectives
  • Progress of Projects Supported by NSFC
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The project aims to develop an integrated linear-scaling time-dependent density functional theory (TD-DFT) for studying low-lying excited states of luminescent molecular materials, especially those fluorescence and phosphorescence co-emitting systems. The central idea will be “from fragments to molecule” (FF2M). That is, the fragmental information will be employed to synthesize the molecular wave function, such that the locality (transferability) of the fragments (functional groups) is directly built into the algorithms. Both relativistic and spin-adapted open-shell TD-DFT will be considered. Use of the renormalized exciton method will also be made to further enhance the efficiency and accuracy of TD-DFT. Solvent effects are to be targeted with the fragment-based solvent model. It is expected that the integrated TD-DFT and program will be of great value in rational design of luminescent molecular materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Zhang DW, Zhang JZH. Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein-molecule interaction energy. J Chem Phys, 2003, 119: 3599–3605

    Article  CAS  Google Scholar 

  2. Chen XH, Zhang DW, Zhang JZH. Fractionation of peptide with disulfide bond for quantum mechanical calculation of interaction energy with molecules. J Chem Phys, 2004, 120: 839–844

    Article  CAS  Google Scholar 

  3. Li SH, Li W, Fang T. An efficient fragment-based approach for predicting the ground-state energies and structures of large molecules. J Am Chem Soc, 2005, 127: 7215–7226

    Article  CAS  Google Scholar 

  4. Jiang N, Ma J, Jiang YS. Electrostatic field-adapted molecular fractionation with conjugated caps for energy calculations of charged biomolecules. J Chem Phys, 2006, 124: 114112

    Article  Google Scholar 

  5. Li W, Li SH, Jiang YS. Generalized energy-based fragmentation approach for computing the ground-state energies and properties of large molecules. J Phys Chem A, 2007, 111: 2193–2199

    Article  CAS  Google Scholar 

  6. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M. Fragment molecular orbital method: An approximate computational method for large molecules. Chem Phys Lett, 1999, 313: 701–706

    Article  CAS  Google Scholar 

  7. Fedorov DG, Kitaura K. Coupled-cluster theory based upon the fragment molecular-orbital method. J Chem Phys, 2005, 123: 134103

    Article  Google Scholar 

  8. Gu FL, Aoki Y, Korchowiec J, Imamura A, Kirtman B. A new localization scheme for the elongation method. J Chem Phys, 2004, 121: 10385–10391

    Article  CAS  Google Scholar 

  9. Chiba M, Fedorov DG, Kitaura K. Time-dependent density functional theory based upon the fragment molecular orbital method. J Chem Phys, 2007, 127: 104108

    Article  Google Scholar 

  10. Fujimoto K, Yang WT. Density-fragment interaction approach for quantum-mechanical/molecular-mechanical calculations with application to the excited states of a Mg2+-sensitive dye. J Chem Phys, 2008, 129: 054102

    Article  Google Scholar 

  11. van Gisbergen SJA., Guerra CF, Baerends EJ,. Towards excitation energies and (hyper)polarizability calculations of large molecules. Application of parallelization and linear scaling techniques to time-dependent density functional response theory. J Comput Chem, 2000, 21: 1511–1523

    Article  Google Scholar 

  12. Coriani S, Høst S, Jansík B, Thøgersen L, Olsen J, Jørgensen P, Reine S, PawŁowski F, Helgaker T, SaŁek P. Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory. J Chem Phys, 2007, 126: 154108

    Article  Google Scholar 

  13. Yam CY, Yokojima S, Chen GH. Linear-scaling time-dependent density-functional theory. Phys Rev B, 2003, 68: 153105

    Google Scholar 

  14. Wang F, Yam CY, Chen GH, Fan KN. Density matrix based time-dependent density functional theory and the solution of its linear response in real time domain. J Chem Phys, 2007, 126: 134104

    Article  Google Scholar 

  15. Cui GL, Fang WH, Yang WT. Reformulating time-dependent density functional theory with non-orthogonal localized molecular orbitals. Phys Chem Chem Phys, 2010, 12: 416–421

    Article  CAS  Google Scholar 

  16. Wu FQ, Liu WJ, Zhang Y, Li ZD. Linear scaling time-dependent density functional theory based on the idea of “from fragments to molecule”. J Chem Theor Comput, 2011, 7: 3643–3660

    Article  CAS  Google Scholar 

  17. Yang W. Direct calculation of electron density in density-functional theory. Phys Rev Lett, 1991, 66: 1438–1441

    Article  CAS  Google Scholar 

  18. Gao J, Liu WJ, Song B, Liu CB. Time-dependent four-component relativistic density functional theory for excitation energies. J Chem Phys, 2004, 121: 6658–6667

    Article  CAS  Google Scholar 

  19. Gao J, Zou WL, Liu WJ, Xiao YL, Peng DL, Song B, Liu CB. Time-dependent four-component relativistic density-functional theory for excitation energies. II. The exchange-correlation kernel. J Chem Phys, 2005, 123: 054102

    Article  Google Scholar 

  20. Peng DL, Zou WL, Liu WJ. Time-dependent quasirelativistic density-functional theory based on the zeroth-order regular approximation. J Chem Phys, 2005, 123: 144101

    Article  Google Scholar 

  21. Liu WJ. Ideas of relativistic quantum chemistry. Mol Phys, 2010, 108: 1679–1706

    Article  CAS  Google Scholar 

  22. Li ZD, Liu WJ. Spin-adapted open-shell random phase approximation and time-dependent density functional theory. I. Theory. J Chem Phys, 2010, 133: 064106

    Article  Google Scholar 

  23. Li ZD, Liu WJ, Zhang Y, Suo BB. Spin-adapted open-shell time-dependent density functional theory. II. Theory and pilot application. J Chem Phys, 2011, 134: 134101

    Article  Google Scholar 

  24. Li ZD, Liu WJ. Spin-adapted open-shell time-dependent density functional theory. III. An even better and simpler formulation. J Chem Phys, 2011, 135: 194106

    Article  Google Scholar 

  25. Li ZD, Liu WJ. Theoretical and numerical assessments of spin-flip time-dependent density functional theory. J Chem Phys, 2012, 136: 024107

    Article  Google Scholar 

  26. Zhang HJ, Malrieu JP, Ma HB, Ma J. Implementation of renormalized excitonic method at ab initio level. J Comput Chem, 2012, 33: 34–43

    Article  Google Scholar 

  27. Meng S, Ma J. Solvatochromic shift of donor-acceptor substituted bithiophene in solvents of different polarity: Quantum chemical and molecular dynamics simulations. J Phys Chem B, 2008, 112: 4313–4322

    Article  CAS  Google Scholar 

  28. Jiang N, Ma J. Multi-layer coarse-graining polarization model for treating electrostatic interactions of solvated α-conotoxin peptides. J Chem Phys, 2012, 136: 134105

    Article  Google Scholar 

  29. Li ZD, Xiao YL, Liu WJ. On the spin separation of algebraic two-component relativistic Hamiltonians. J Chem Phys, 2012, 137: 154114

    Article  Google Scholar 

  30. Li ZD, Suo BB, Zhang Y, Xiao YL, Liu WJ. Combining spin-adapted open-shell TD-DFT with spin-orbit coupling. Mol Phys, 2003, doi: 10.1080/00268976.2013.785611

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenJian Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Ma, J. Theoretical study of low-lying excited states of molecular aggregates. I. Development of linear-scaling TD-DFT. Sci. China Chem. 56, 1263–1266 (2013). https://doi.org/10.1007/s11426-013-4908-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4908-7

Keywords

Navigation