Skip to main content
Log in

Theoretical study of the low-lying electronic excited states for molecular aggregates

  • Perspectives
  • Progress of Projects Supported by NSFC
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We present here a brief summary of a National Natural Science Foundation Major Project entitled “Theoretical study of the low-lying electronic excited state for molecular aggregates”. The project focuses on theoretical investigation of the electronic structures and dynamic processes upon photo- and electric-excitation for molecules and aggregates. We aim to develop reliable methodology to predict the optoelectronic properties of molecular materials related to the electronic excitations and to apply in the experiments. We identify two essential scientific challenges: (i) nature of intramolecular and intermolecular electronic excited states; (ii) theoretical description of the dynamic processes of the coupled motion of electronic excitations and nucleus. We propose the following four subjects of research: (i) linear scaling time-dependent density-functional theory and its application to open shell system; (ii) computational method development of electronic excited state for molecular aggregates; (iii) theoretical investigation of the time evolution of the excited state dynamics; (iv) methods to predict the optoelectronic properties starting from electronic excited state investigation for organic materials and experimental verifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DDC, Dos Santos DA, Brédas JL, Logdlund M, Salaneck WR. Electroluminescence in conjugated polymers. Nature, 1999, 397: 121–128

    Article  CAS  Google Scholar 

  2. Baldo MA, Thompson ME, Forrest SR. High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature, 2000, 403: 750–753

    Article  CAS  Google Scholar 

  3. Peumans P, Uchida S, Forrest SR. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature, 2003, 425: 158–162

    Article  CAS  Google Scholar 

  4. Forrest SR. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004, 428: 911–918

    Article  CAS  Google Scholar 

  5. Pope ME, Swenberg CE. Electronic Processes in Organic Crystals and Polymers. New York: Oxford University Press, 1999

    Google Scholar 

  6. Silinsh EA, Capek V. Organic Molecular Crystals: Interaction, Localization, and Transport Phenomena. New York: AIP Press, 1994

    Google Scholar 

  7. May V, Kühn O. Charge and Energy Transfer Dynamics in Molecular Systems. Berlin: Wiley-VCH, 2000

    Google Scholar 

  8. Brédas JL, Beljonne D, Coropceanu V, Cornil J. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: A molecular picture. Chem Rev, 2004, 104: 4971–5003

    Article  Google Scholar 

  9. Coropceanu V, Cornil J, da Silva Filho DA, Oliver Y, Silbey R, Brédas JL. Charge transport in organic semiconductors. Chem Rev, 2007, 107: 926–952

    Article  CAS  Google Scholar 

  10. Dirac PAM. Quantum mechanics of many-electron systems. Proc Roy Soc (London) Ser A, 1929, 123, 714-733

    Google Scholar 

  11. Cohen AJ, Mori-Sánchez A, Yang WT. Insights into current limitations of density functional theory. Science, 2008, 321: 792–794

    Article  CAS  Google Scholar 

  12. Clary DC. Quantum dynamics of chemical reactions. Science, 2008, 321: 789–791

    Article  CAS  Google Scholar 

  13. Kroes GJ. Frontiers in surface scattering simulations. Science, 2008, 321: 794–797

    Article  CAS  Google Scholar 

  14. Carter EA. Challenges in modeling materials properties without experimental input. Science, 2008, 321: 800–803

    Article  CAS  Google Scholar 

  15. Gunes S, Neugebauer H, Sariciftci NS. Conjugated polymer-based organic solar cells. Chem Rev, 2007, 107: 1324–1338

    Article  Google Scholar 

  16. O’Regan B, Grätzel M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloical TiO2 films. Nature, 1991, 353: 737–740

    Article  Google Scholar 

  17. Garito A, Shi RF, Wu M. Nonlinear optics of organic and polymer materials. Phys Today, 1994, 47: 51–57

    Article  CAS  Google Scholar 

  18. Liang WZ, Yokojima S, Chen GH. Localized-density-matrix method and nonlinear optical response. J Chem Phys, 2000, 113: 1403–1408

    Article  CAS  Google Scholar 

  19. Wu QY, Deng CM, Peng Q, Niu YL, Shuai ZG. Quantum chemical insights into the aggregation induced emission phenomena: A QM/MM study for pyrazine derivative. J Comput Chem, 2012, 33: 1862–1869

    Article  CAS  Google Scholar 

  20. Liu WJ, Ma J. Theoretical study of low-lying excited states of molecular aggregates. I. Development of linear-scaling TD-DFT. Sci China Chem, 2013, 56(9): 1263–1266

    Article  Google Scholar 

  21. Liang WZ, Wu W. Theory and algorithms for the excited states of large molecules and molecular aggregates. Sci China Chem, 2013, 56(9): 1267–1270

    Article  Google Scholar 

  22. Shi Q, Chen H. Theoretical methods for excited state dynamics of molecules and molecular aggregates. Sci China Chem, 2013, 56(9): 1271–1276

    Article  Google Scholar 

  23. Shuai ZG, Xu W, Peng Q, Geng H. From electronic excited state theory to the property predictions of organic optoelectronic materials. Sci China Chem, 2013, 56(9): 1277–1284

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiGang Shuai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shuai, Z., Liu, W., Liang, W. et al. Theoretical study of the low-lying electronic excited states for molecular aggregates. Sci. China Chem. 56, 1258–1262 (2013). https://doi.org/10.1007/s11426-013-4906-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4906-9

Keywords

Navigation