Skip to main content
Log in

Highly selective recognition of adenosine 5′-triphosphate against other nucleosides triphosphate with a luminescent metal-organic framework of [Zn(BDC)(H2O)2] n (BDC = 1,4-benzenedicarboxylate)

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Selective recognition of adenosine 5′-triphosphate (ATP) is of great significance owing to its indispensable functions to organisms. Also, it is a challenging task because other nucleosides triphosphate hold the same triphosphate group and structurally planar bases as ATP. It is known that metal-organic frameworks (MOFs) are a new type of sensing material. In this work, highly selective recognition of ATP against other nucleosides triphosphate is successfully achieved with a luminescent MOF of [Zn(BDC)(H2O)2] n (BDC2− = 1,4-benzenedicarboxylate). [Zn(BDC)(H2O)2] n dispersed in water shows a remarkable redshift of the emission wavelength upon addition of ATP, while cytidine 5′-triphosphate (CTP), uridine 5′-triphosphate (UTP), and guanosine 5′-triphosphate (GTP), as well as some inorganic anions such as P2O7 4− or PO4 3− can’t induce such spectral change as ATP. 1H NMR, 31P NMR and Raman spectra indicate that both π-π stacking interactions and the coordination of Zn(II) with adenine and the phosphate group are involved in the interaction of [Zn(BDC)(H2O)2] n with ATP. In addition, the experimental results showed that the redshift extent of the emission wavelength of [Zn(BDC)(H2O)2] n has the linear relationship with the concentration of ATP in the range of 0.3–1.8 mmol/L. Based on this, the detection of ATP content in the sample of ATP injection was made with satisfactory results. This system pioneers the application of MOFs in the recognition of nucleotides, and testifies that the participation of base in the recognition process can improve the selectivity against the other nucleotides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martínez-Máñez R, Sancenón F. Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev, 2003, 103: 4419–4476

    Article  Google Scholar 

  2. Spangler C, Schaeferling M, Wolfbeis OS. Fluorescent probes for microdetermination of inorganic phosphates and biophosphates. Microchim Acta, 2008, 161: 1–39

    Article  CAS  Google Scholar 

  3. Kim SK, Lee DH, Hong JI, Yoon J. Chemosensors for pyrophosphate. Acc Chem Res, 2009, 42: 23–31

    Article  CAS  Google Scholar 

  4. Zhao XJ, Huang CZ. Small organic molecules as fluorescent probes for nucleotides and their derivatives. TrAC-Trend Anal Chem, 2010, 29: 354–367

    Article  CAS  Google Scholar 

  5. Zhou Y, Xu Z, Yoon J. Fluorescent and colorimetric chemosensors for detection of nucleotides, FAD and NADH: Highlighted research during 2004–2010. Chem Soc Rev, 2011, 40: 2222–2235

    Article  CAS  Google Scholar 

  6. Ashcroft FM, Gribble FM. ATP-sensitive K+ channels and insulin secretion: Their role in health and disease. Diabetologia, 1999, 42: 903–919

    Article  CAS  Google Scholar 

  7. Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G. Mammalian TOR: A homeostatic ATP sensor. Science, 2001, 294: 1102–1105

    Article  CAS  Google Scholar 

  8. Sazani PL, Larralde R, Szostak JW. A small aptamer with strong and specific recognition of the triphosphate of ATP. J Am Chem Soc, 2004, 126: 8370–8371

    Article  CAS  Google Scholar 

  9. Zuo X, Song S, Zhang J, Pan D, Wang L, Fan C. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J Am Chem Soc, 2007, 129: 1042–1043

    Article  CAS  Google Scholar 

  10. Wang J, Wang L, Liu X, Liang Z, Song S, Li W, Li G, Fan C. A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv Mater, 2007, 19: 3943–3946

    Article  CAS  Google Scholar 

  11. Li N, Ho CM. Aptamer-based optical probes with separated molecular recognition and signal transduction modules. J Am Chem Soc, 2008, 130: 2380–2381

    Article  CAS  Google Scholar 

  12. Xu Z, Singh NJ, Lim J, Pan J, Kim HN, Park S, Kim KS, Yoon J. Unique sandwich stacking of pyrene-adenine-pyrene for selective and ratiometric fluorescent sensing of ATP at physiological pH. J Am Chem Soc, 2009, 131: 15528–15533

    Article  CAS  Google Scholar 

  13. Wang D, Zhang X, He C, Duan C. Aminonaphthalimide-based imidazolium podands for turn-on fluorescence sensing of nucleoside polyphosphates. Org Biomol Chem, 2010, 8: 2923–2925

    Article  CAS  Google Scholar 

  14. Zong G, Xian L, Lua G. L-Arginine bearing an anthrylmethyl group: Fluorescent molecular NAND logic gate with H+ and ATP as inputs. Tetrahedron Lett, 2007, 48: 3891–3894

    Article  CAS  Google Scholar 

  15. Bazzicalupi C, Biagini S, Bencini A, Faggi E, Giorgi C, Matera I, Valtancoli B. ATP Recognition and sensing with a phenanthroline-containing polyammonium receptor. Chem Commun, 2006: 4087–4089

    Google Scholar 

  16. Neelakandan PP, Hariharan M, Ramaiah D. Synthesis of a novel cyclic donor-acceptor conjugate for selective recognition of ATP. Org Lett, 2005, 7: 5765–5768

    Article  CAS  Google Scholar 

  17. Ojida A, Park S-k, Mito-okac Y, Hamachi I. Efficient fluorescent ATP-sensing based on coordination chemistry under aqueous neutral conditions. Tetrahedron Lett, 2002, 43: 6193–6195

    Article  CAS  Google Scholar 

  18. Bazzicalupi C, Bencini A, Berni E, Bianchi A, Fornasari P, Giorgi C, Marinelli C, Valtancoli B. Protonated macrocyclic Zn(II) complexes as polyfunctional receptors for ATP. Dalton Trans, 2003: 2564–2572

    Google Scholar 

  19. Ojida A, Miyahara Y, Wongkongkatep J, Tamaru S-i, Sada K, Hamachi I. Design of dual-emission chemosensors for ratiometric detection of ATP derivatives. Chem Asian J, 2006, 1: 555–563

    Article  CAS  Google Scholar 

  20. Jose DA, Mishra S, Ghosh A, Shrivastav A, Mishra SK, Das A. Colorimetric sensor for ATP in aqueous solution. Org Lett, 2007, 9: 1979–1982

    Article  CAS  Google Scholar 

  21. Ojida A, Takashima I, Kohira T, Nonaka H, Hamachi I. Turn-on fluorescence sensing of nucleoside polyphosphates using a xanthene-based Zn(II) complex chemosensor. J Am Chem Soc, 2008, 130: 12095–12101

    Article  CAS  Google Scholar 

  22. Kurishita Y, Kohira T, Ojida A, Hamachi I. Rational design of FRET-based ratiometric chemosensors for in vitro and in cell fluorescence analyses of nucleoside polyphosphates. J Am Chem Soc, 2010, 132: 13290–13299

    Article  CAS  Google Scholar 

  23. Xu Z, Spring DR, Yoon J. Fluorescent sensing and discrimination of ATP and ADP based on a unique sandwich assembly of pyreneadenine-pyrene. Chem Asian J, 2011, 6: 2114–2122

    Article  CAS  Google Scholar 

  24. Pathak RK, Hinge VK, Rai A, Panda D, Rao CP. Imino-phenolic-pyridyl conjugates of calix[4]arene (L1 and L2) as primary fluorescence switch-on sensors for Zn2+ in solution and in HeLa cells and the recognition of pyrophosphate and ATP by [ZnL2]. Inorg Chem, 2012, 51: 4994–5005

    Article  CAS  Google Scholar 

  25. Wang S, Chang YT. Combinatorial synthesis of benzimidazolium dyes and its diversity directed application toward GTP-selective fluorescent chemosensors. J Am Chem Soc, 2006, 128: 10380–10381

    Article  CAS  Google Scholar 

  26. Meek ST, Greathouse JA, Allendorf MD. Metal-organic frameworks: A rapidly growing class of versatile nanoporous materials. Adv Mater, 2011, 23: 249–267

    Article  CAS  Google Scholar 

  27. Rocca JD, Liu D, Lin W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res, 2011, 44: 957–968

    Article  Google Scholar 

  28. Chen B, Wang L, Xiao Y, Fronczek FR, Xue M, Cui Y, Qian G. A luminescent metal-organic framework with Lewis basic pyridyl sites for the sensing of metal ions. Angew Chem Int Ed, 2009, 48: 500–503

    Article  CAS  Google Scholar 

  29. Liu S, Xiang Z, Hu Z, Zheng X, Cao D. Zeolitic imidazolate framework-8 as a luminescent material for the sensing of metal ions and small molecules. J Mater Chem, 2011, 21: 6649–6653

    Article  CAS  Google Scholar 

  30. Qiu LG, Li ZQ, Wu Y, Wang W, Xu T, Jiang X. Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chem Commun, 2008: 3642–3644

    Google Scholar 

  31. Gole B, Bar AK, Mukherjee PS. Fluorescent metal-organic framework for selective sensing of nitroaromatic explosives. Chem Commun, 2011, 47: 12137–12139

    Article  CAS  Google Scholar 

  32. Lu ZZ, Zhang R, Li YZ, Guo ZJ, Zheng HG. Solvatochromic behavior of a nanotubular metal-organic framework for sensing small molecules. J Am Chem Soc, 2011, 133: 4172–4174

    Article  CAS  Google Scholar 

  33. Chow CF, Lam MHW, Wong WY. A heterobimetallic ruthenium(II)- copper(II) donor-acceptor complex as a chemodosimetric ensemble for selective cyanide detection. Inorg Chem, 2004, 43: 8387–8393

    Article  CAS  Google Scholar 

  34. Wong KL, Law GL, Yang YY, Wong WT. A highly porous luminescent terbium-organic framework for reversible anion sensing. Adv Mater, 2006, 18: 1051–1054

    Article  CAS  Google Scholar 

  35. Chen B, Wang L, Zapata F, Qian G, Lobkovsky EB. A luminescent microporous metal-organic framework for the recognition and sensing of anions. J Am Chem Soc, 2008, 130: 6718–6719

    Article  CAS  Google Scholar 

  36. Kreno LE, Leong K, Farha OK, Allendorf M, Duyne RPV, Hupp JT. Metal-organic framework materials as chemical sensors. Chem Rev, 2012, 112: 1105–1125

    Article  CAS  Google Scholar 

  37. Zhao XJ, He RX, Li YF. A terbium(III)-organic framework for highly selective sensing of cytidine triphosphate. Analyst, 2012, 137: 5190–5192

    Article  CAS  Google Scholar 

  38. Edgar M, Mitchell R, Slawin AMZ, Lightfoot P, Wright PA. Solid-state transformations of zinc 1,4-benzenedicarboxylates mediated by hydrogen-bond-forming molecules. Chem Eur J, 2001, 7: 5168–5175

    Article  CAS  Google Scholar 

  39. Zhu LN, Zhang LZ, Wang WZ, Liao DZ, Cheng P, Jiang ZH, Yan SP. [Zn(BDC)(H2O)2]n: A novel blue luminescent coordination polymer constructed from BDC-bridged 1-D chains via interchain hydrogen bonds (BDC = 1,4-benzenedicarboxylate). Inorg Chem Commun, 2002, 5: 1017–1021

    Article  CAS  Google Scholar 

  40. Dybtsev DN, Chun H, Yoon SH, Kim D, Kim K. Microporous manganese formate: A simple metal-organic porous material with high framework stability and highly selective gas sorption properties. J Am Chem Soc, 2004, 126: 32–33

    Article  CAS  Google Scholar 

  41. Li JR, Tao Y, Yu Q, Bu XH, Sakamoto H, Kitagawa S. Selective gas adsorption and unique structural topology of a highly stable guestfree zeolite-type MOF material with N-rich chiral open channels. Chem Eur J, 2008, 14: 2771–2776

    Article  CAS  Google Scholar 

  42. Lama P, Aijaz A, Neogi S, Barbour LJ, Bharadwaj PK. Microporous La(III) metal-organic framework using a semirigid tricarboxylic ligand: Synthesis, single-crystal to single-crystal sorption properties, and gas adsorption studies. Cryst Growth Des, 2010, 10: 3410–3417

    Article  CAS  Google Scholar 

  43. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  44. Hosseini MW, Blacker AJ, Lehn JM. Multiple molecular recognition and catalysis. A multifunctional anion receptor bearing an anion binding site, an intercalating group, and a catalytic site for nucleotide binding and hydrolysis. J Am Chem Soc, 1990, 112: 3896–3904

    Article  CAS  Google Scholar 

  45. Happe JA, Morales M. Nitrogen-15 nuclear magnetic resonance evidence that Mg2+ does not complex with nitrogen atoms of adenosine triphosphate. J Am Chem Soc, 1966, 88: 2077–2078

    Article  CAS  Google Scholar 

  46. Du F, Mao XA. Binding site of Zn2+ in ATP:N1 at low pH and N7 at high pH as evidenced by 1H-15N NMR HMBC experiments. Spectrochim Acta A, 2000, 56: 2391–2395

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YuanFang Li or ChengZhi Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Fang, J., Li, Y. et al. Highly selective recognition of adenosine 5′-triphosphate against other nucleosides triphosphate with a luminescent metal-organic framework of [Zn(BDC)(H2O)2] n (BDC = 1,4-benzenedicarboxylate). Sci. China Chem. 56, 1651–1657 (2013). https://doi.org/10.1007/s11426-013-4905-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4905-x

Keywords

Navigation