Skip to main content
Log in

Synthesis of aminoalkylsilanes with oligo(ethylene oxide) unit as multifunctional electrolyte additives for lithium-ion batteries

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Aminoalkylsilanes with oligo(ethylene oxide) units were designed and synthesized as multifunctional electrolyte additives for lithium-ion batteries. The chemical structures were fully characterized by nuclear magnetic resonance (NMR) spectroscopy and their thermal properties, viscosities, electrochemical windows, and ionic conductivities were systematically measured. With adding one of these compounds (1 vol. %, DSC3N1) in the baseline electrolyte 1.0 M LiPF6 in EC: DEC (1:1, in volume), Li/LiCoO2 half cell tests showed an improved cyclability after 100 cycles and improved rate capability at 5C rate condition. Electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and energy dispersive spectroscopic (EDS) analysis confirmed the acid scavenging function and film forming capability of DSC3N1. These results demonstrated that the multifunctional organosilicon compounds have considerable potential as additives for use in lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced li-ion batteries: A review. Energy Environ Sci, 2011, 4: 3243–3262

    Article  CAS  Google Scholar 

  2. Xu K, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev, 2004, 104: 4303–4417

    Article  CAS  Google Scholar 

  3. Zhang SS. A review on electrolyte additives for lithium-ion batteries. J Power Sources, 2011, 162: 1379–1394

    Article  Google Scholar 

  4. Shim EG, Nam TH, Kim HS, Moon SI. Effects of functional electrolyte additives for Li-ion batteries. J Power Sources, 2007, 172: 901–907

    Article  CAS  Google Scholar 

  5. Wang X, Yasukawa E, Kasuya S. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: I. Fundamental properties. J Electrochem Soc, 2001, 148: A1058–A1065

    Article  CAS  Google Scholar 

  6. Xu MQ, Zhou L, Hao LS, Xing LD, Li WS, Lucht BT. Investigation and application of lithium difluoro(oxalate)borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium-ion batteries. J Power Sources, 2011, 196: 6794–6801

    Article  CAS  Google Scholar 

  7. Moshurchak LM, Buhrmester C, Wang RL, Dahn JR. Comparative studies of three redox shuttle molecule classes for overcharge protection of LiFePO4-based Li-ion cells. Electrochim Acta, 2007, 52: 3779–3784

    Article  CAS  Google Scholar 

  8. Yang L, Lucht BL. Inhibition of electrolyte oxidation in lithium ion batteries with electrolyte additives. Electrochem Solid State Lett, 2009, 12: A229–A231

    Article  CAS  Google Scholar 

  9. Rossib NAA, West R. Silicon-containing liquid polymer electrolytes for application in lithium ion batteries. Polym Int, 2009, 58: 267–277

    Article  Google Scholar 

  10. Tse KY, Zhang LZ, Baker SE, Nichols BM, West R, Hamers RJ. Vertically aligned carbon nanofibers coupled with organosilicon electrolytes: Electrical properties of a high-stability nanostructured electrochemical interface. Chem Mater, 2007, 19: 5734–5741

    Article  CAS  Google Scholar 

  11. Weng W, Zhang ZC, Lu J, Amine K. A disiloxane-functionaized phosphonium-based ionic liquid as electrolyte for lithium-ion batteries. Chem Commun, 2011, 47: 11969–11971

    Article  CAS  Google Scholar 

  12. Zhang LZ, Zhang ZC, Harring S, Straughan M, Butorac M, Chen ZH, Lyons LJ, Amine K, West R. Highly conductive trimethylsilyl oligo(ethylene oxide) electrolytes for energy storage applications. J Mater Chem, 2008, 18: 3713–3717

    Article  CAS  Google Scholar 

  13. Zhang LZ, Lyons L, Newhouse J, Zhang ZC, Straughan M, Chen ZH, Amine K, Hamers RJ, West R. Synthesis and characterization of alkylsilane ethers with oligo(ethylene oxide) substituents for safe electrolytes in lithium-ion batteries. J Mater Chem, 2010, 20: 8224–8226

    Article  CAS  Google Scholar 

  14. Amine K, Wang QZ, Vissersa DR, Zhang ZC, Rossib NAA, West R. Novel silane compounds as electrolyte solvents for Li-ion batteries. Electrochem Commun, 2006, 8: 429–433

    Article  CAS  Google Scholar 

  15. Xia Q, Wang B, Wu YP, Luo HJ, van Ree T. Phenyl tris-2-methoxydiethoxy silane as an additive to PC-based electrolytes for lithium-ion batteries. J Power Sources, 2008, 180: 602–606

    Article  CAS  Google Scholar 

  16. Takechi K, Shiga T. Nonaqueous electrolytic solution for battery and nonaqueous electrolytic solution battery. US Patent 6235431, 2001

    Google Scholar 

  17. Zhang HP, Xia Q, Wang B, Yang LC, Wu YP, Sun DL, Gan CL, Luo HJ, Bebeda AW, van Ree T. Vinyl-Tris-(methoxydiethoxy)silane as an effective and ecofriendly flame retardant for electrolytes in lithium ion batteries. Electrochem Commun, 2009, 11: 526–529

    Article  CAS  Google Scholar 

  18. Walkowiak M, Waszak D, Schroeder G, Gierczyk B. Polyether-functionalized disiloxanes as new film-forming electrolyte additive for Li-ion cells with graphitic anodes. Electrochem Commun, 2008, 10: 1676–1679

    Article  CAS  Google Scholar 

  19. Takechi K, Koiwai A. Nonaqueous electrolytic solution for battery and nonaqueous electrolytic solution battery. US Patent 6077628, 2000

    Google Scholar 

  20. Markovsky B, Nimberger A, Talyosef Y, Rodkin A, Belostotskii AM, Salitra G, Aurbach D, Kim HJ. On the influence of additives in electrolyte solutions on the electrochemical behavior of carbon/ LiCoO2 cells at elevated temperatures. J Power Sources, 2004, 136: 296–302

    Article  CAS  Google Scholar 

  21. Takeuchi T, Kyuna T, Morimoto H, Tobishima S. Influence of surface modification of LiCoO2 by organic compounds on electrochemical and thermal properties of Li/LiCoO2rechargeable cells. J Power Sources, 2011, 196: 2790–2801

    Article  CAS  Google Scholar 

  22. Wang E, Ofer D, Bowden W, Iltchev N, Moses R, Brandt K. Stability of lithium ion spinel cells. III. Improved life of charged cells. J Electrochem Soc, 2000, 147: 4023–4028

    Article  CAS  Google Scholar 

  23. Zhao Y, Xia D, Li Y, Yu C. Investigation of High-rate spherical LiCoO2 with mesoporous structure via self-assembly in microemulsion. Electrochem Solid State Lett, 2008, 11: A30–A33, and references therein

    Article  CAS  Google Scholar 

  24. Baek B, Jung C. Enhancement of the Li+ ion transfer reaction at the LiCoO2 interface by 1,3,5-trifluorobenzene. Electrochim Acta, 2010, 55: 3307–3311

    Article  CAS  Google Scholar 

  25. Zhuang QC, Xu JM, Fan XY, Dong QF, Jiang YX, Huang L, Sun SG. An electrochemical impedance spectroscopic study of the electronic and ionic transport properties of LiCoO2 cathode. Chin Sci Bull, 2007, 52: 1187–1195

    Article  CAS  Google Scholar 

  26. Takanashi Y, Orikasa Y, Mogi M, Oishi M, Murayama H, Sato K, Yamashige H, Takamatsu D, Fujimoto T, Tanida H, Arai H, Ohta T, Matsubara E, Uchimoto Y, Ogumi Z. Thickness estimation of interface films formed on Li1−xCoO2 electrodes by hard X-ray photoelectron spectroscopy. J Power Sources, 2011, 196: 10679–10685

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LingZhi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Luo, H., Mai, Y. et al. Synthesis of aminoalkylsilanes with oligo(ethylene oxide) unit as multifunctional electrolyte additives for lithium-ion batteries. Sci. China Chem. 56, 739–745 (2013). https://doi.org/10.1007/s11426-013-4861-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4861-5

Keywords

Navigation