Skip to main content
Log in

A further understanding of the cation exchange mechanism for the extraction of Sr2+ and Cs+ by ionic liquid

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The cation exchange mechanism was further investigated during the extraction of Sr2+ and Cs+ using the extractant dicyclohexano-18-crown-6 (DCH18C6) in an ionic liquid (IL) 1-ethyl-3-methyimidazolium bis[(trifluoromethyl)sulfonyl]imide (C2mimNTf2). The concentrations of both the cation C2mim+ and the anion NTf2 in aqueous phase were detected. The concentration of NTf2 in the aqueous phase decreased as Sr2+ or Cs+ exchanged into the IL phase. Addition of C2mim+ or NTf2 as well as the variation of the solubility of C2mimNTf2 influenced the extraction efficiency of Sr2+ or Cs+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hallett JP, Welton T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chem Rev, 2011, 111(5): 3508–3576

    Article  CAS  Google Scholar 

  2. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater, 2009, 8(8): 621–629

    Article  CAS  Google Scholar 

  3. Han XX, Armstrong DW. Ionic liquids in separations. Accounts Chem Res, 2007, 40(11): 1079–1086

    Article  CAS  Google Scholar 

  4. Sun XQ, Luo HM, Dai S. Ionic liquids-based extraction: A promising strategy for the advanced nuclear fuel cycle. Chem Rev, 2012, 112(4): 2100–2128

    Article  CAS  Google Scholar 

  5. Xu C, Shen XH, Chen QD, Gao HC. Investigation on the extraction of strontium ions from aqueous phase using crown ether-ionic liquid systems. Sci China Ser B-Chem, 2009, 52(11): 1858–1864

    Article  CAS  Google Scholar 

  6. Xu C, Yuan LY, Shen XH, Zhai ML. Efficient removal of caesium ions from aqueous solution using a calix crown ether in ionic liquids: Mechanism and radiation effect. Dalton Trans, 2010, 39(16): 3897–3902

    Article  CAS  Google Scholar 

  7. Sun TX, Wang ZM, Shen XH. Crystallization of cesium complex containing bis(2-propyloxy)calix-4-crown-6 and bis (trifluoromethyl) sulfonyl imide. Inorg Chim Acta, 2012, 390: 8–11

    Article  CAS  Google Scholar 

  8. Sun XQ, Bell JR, Luo HM, Dai S. Extraction separation of rare-earth ions via competitive ligand complexations between aqueous and ionic-liquid phases. Dalton Trans, 2011, 40(31): 8019–8023

    Article  CAS  Google Scholar 

  9. Marin TW, Shkrob IA, Dietz ML. Hydrogen-bonding interactions and protic equilibria in room-temperature ionic liquids containing crown ethers. J Phys Chem B, 2011, 115(14): 3912–3918

    Article  CAS  Google Scholar 

  10. Wang JS, Sheaff CN, Yoon B, Addleman RS, Wai CM. Extraction of uranium from aqueous solutions by using ionic liquid and supercritical carbon dioxide in conjunction. Chem-Eur J, 2009, 15(17): 4458–4463

    Article  CAS  Google Scholar 

  11. Shimojo K, Kurahashi K, Naganawa H. Extraction behavior of lanthanides using a diglycolamide derivative TODGA in ionic liquids. Dalton Trans, 2008, 37(37): 5083–5088

    Article  Google Scholar 

  12. Dietz ML, Jakab S, Yamato K, Bartsch RA. Stereochemical effects on the mode of facilitated ion transfer into room-temperature ionic liquids. Green Chem, 2008, 10(2): 174–176

    Article  CAS  Google Scholar 

  13. Dietz ML. Ionic liquids as extraction solvents: Where do we stand? Sep Sci Technol, 2006, 41(10): 2047–2063

    Article  CAS  Google Scholar 

  14. Luo HM, Dai S, Bonnesen PV, Buchanan AC, Holbrey JD, Bridges NJ, Rogers RD. Extraction of cesium ions from aqueous solutions using calix-4-arene-bis(tert-octylbenzo-crown-6) in ionic liquids. Anal Chem, 2004, 76(11): 3078–3083

    Article  CAS  Google Scholar 

  15. Luo HM, Dai S, Bonnesen PV. Solvent extraction of Sr2+ and Cs+ based on room-temperature ionic liquids containing monoaza-substituted crown ethers. Anal Chem, 2004, 76(10): 2773–2779

    Article  CAS  Google Scholar 

  16. Dai S, Ju YH, Barnes CE. Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids. J Chem Soc-Dalton Trans, 1999, 28(8): 1201–1202

    Article  Google Scholar 

  17. Dietz ML, Dzielawa JA. Ion-exchange as a mode of cation transfer into room-temperature ionic liquids containing crown ethers: Implications for the ‘greenness’ of ionic liquids as diluents in liquid-liquid extraction. Chem Commun, 2001, 37(20): 2124–2125

    Article  Google Scholar 

  18. Dietz ML, Stepinski DC. A ternary mechanism for the facilitated transfer of metal ions into room-temperature ionic liquids (RTILs): Implications for the “greenness” of RTILs as extraction solvents. Green Chem, 2005, 7(10): 747–750

    Article  CAS  Google Scholar 

  19. Jensen MP, Dzielawa JA, Rickert P, Dietz ML. EXAFS investigations of the mechanism of facilitated ion transfer into a room-temperature ionic liquid. J Am Chem Soc, 2002, 124(36): 10664

    Article  CAS  Google Scholar 

  20. Jensen MP, Neuefeind J, Beitz JV, Skanthakumar S, Soderholm L. Mechanisms of metal ion transfer into room-temperature ionic liquids: The role of anion exchange. J Am Chem Soc, 2003, 125(50): 15466–15473

    Article  CAS  Google Scholar 

  21. Dietz ML, Dzielawa JA, Laszak I, Young BA, Jensen MP. Influence of solvent structural variations on the mechanism of facilitated ion transfer into room-temperature ionic liquids. Green Chem, 2003, 5(6): 682–685

    Article  CAS  Google Scholar 

  22. Bell TJ, Ikeda Y. The application of novel hydrophobic ionic liquids to the extraction of uranium(vi) from nitric acid medium and a determination of the uranyl complexes formed. Dalton Trans, 2011, 40(39): 10125–10130

    Article  CAS  Google Scholar 

  23. Luo H, Dai S, Bonnesen PV, Haverlock TJ, Moyer BA, Buchanan AC. A striking effect of ionic-liquid anions in the extraction of Sr2+ and Cs+ by dicyclohexano-18-crown-6. Solvent Extr Ion Exch, 2006, 24(1): 19–31

    Article  CAS  Google Scholar 

  24. Kozonoi N, Ikeda Y. Extraction mechanism of metal ion from aqueous solution to the hydrophobic ionic liquid, 1-butyl-3-methyli-midazolium nonafluorobutanesulfonate. Mon Chem, 2007, 138(11): 1145–1151

    Article  CAS  Google Scholar 

  25. Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Gratzel M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem, 1996, 35(5): 1168–1178

    Article  CAS  Google Scholar 

  26. Dzyuba SV, Bartsch RA. Influence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexafluorophosphates and bis(trifluorormethyl-sulfonyl)imides on physical properties of the ionic liquids. ChemPhysChem, 2002, 3(2): 161–166

    Article  CAS  Google Scholar 

  27. Paul A, Mandal PK, Samanta A. How transparent are the imidazolium ionic liquids? A case study with 1-methyl-3-butylimidazolium hexafluorophosphate, [Bmim][PF6]. Chem Phys Lett, 2005, 402(4–6): 375–379

    Article  CAS  Google Scholar 

  28. Dean JA. Lange’s handbook of chemistry(13th), 1985, McGraw-Hill Book Company

    Google Scholar 

  29. Katsuta S, Ogawa R, Yamaguchi N, Ishitani T, Takeda Y. Ion pair formation of 1-alkyl-3-methylimidazolium salts in water. J Chem Eng Data, 2007, 52(1): 248–251

    Article  CAS  Google Scholar 

  30. Kielland J. Individual activity coefficients of ions in aqueous solutions. J Am Chem Soc, 1937, 59: 1675–1678

    Article  CAS  Google Scholar 

  31. Zhang JJ, Shen XH. Multiple equilibria interaction pattern between the ionic liquids C(n)mimPF(6) and beta-cyclodextrin in aqueous solutions. J Phys Chem B, 2011, 115(41): 11852–11861

    Article  CAS  Google Scholar 

  32. Salomon M. Conductance of solutions of lithium bis(trifluoromethanesulfone)imide in water, propylene carbonate, acetonitrile and methyl formate at 25-degrees-c. J Solut Chem, 1993, 22(8): 715–725

    Article  CAS  Google Scholar 

  33. Freire MG, Carvalho PJ, Silva AMS, Santos L, Rebelo LPN, Marrucho IM, Coutinho JAP. Ion specific effects on the mutual solubilities of water and hydrophobic ionic liquids. J Phys Chem B, 2009, 113(1): 202–211

    Article  CAS  Google Scholar 

  34. Freire MG, Carvalho PJ, Gardas RL, Marrucho IM, Santos L, Coutinho JAP. Mutual solubilities of water and the C(n)mimTf2N hydrophobic ionic liquids. J Phys Chem B, 2008, 112(6): 1604–1610

    Article  CAS  Google Scholar 

  35. Freire MG, Neves C, Carvalho PJ, Gardas RL, Fernandes AM, Marrucho IM, Santos L, Coutinho JAP. Mutual solubilities of water and hydrophobic ionic liquids. J Phys Chem B, 2007, 111(45): 13082–13089

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XingHai Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, T., Shen, X. & Chen, Q. A further understanding of the cation exchange mechanism for the extraction of Sr2+ and Cs+ by ionic liquid. Sci. China Chem. 56, 782–788 (2013). https://doi.org/10.1007/s11426-013-4859-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4859-z

Keywords

Navigation