Skip to main content
Log in

High hydrosilylation efficiency of porous silicon SiHx species produced by Pt-assisted chemical etching for biochip fabrication

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Porous silicon (PSi) prepared from Pt metal-assisted chemical etching (MaCE) was demonstrated to possess higher hydrosilylation efficiency (∼57%) than anodized PSi (∼11%) by surface reaction with ω-undecenyl alcohol (UO). Deconvolution of the SiHx (x = 1-3) stretching bands revealed the abundance of SiH2 species on MaCE PSi was 53%, ∼10% higher than on anodized samples, while both of SiH1 and SiH3 were ∼5% lower correspondently on MaCE PSi than on anodized samples. The surface SiHx abundances were suggested to account for the higher hydrosilylation efficiency on MaCE PSi. Optimization of Pt-assisted chemical etching parameters suggested a 7–15 nm thick Pt-coating and an etching time of 3–10 min for biochip applications. Scanning electron microscopy images revealed that an isotropic top meso-porous layer was beneficial for hydrosilylation and long-term durability under ambient conditions. To end, an example of histidine-tagged protein immobilization and microarray was illustrated. Combining the materials’ property, surface chemistry, and micro-fabrication technology together, we envision that silicon based biochip applications have a prosperous future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Canham LT. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Ph Lett, 1990, 57, 1046–1048

    Article  CAS  Google Scholar 

  2. Canham LT, Cullis AG, Pickering G, Dosser OD. Luminescent anodized silicon aerocrystal networks prepared by supercritical drying. Nature, 1994, 368: 133–135

    Article  CAS  Google Scholar 

  3. Lin VS, Motesharei K, Dancil KPS, Sailor MJ, Ghadiri MR. A porous silicon-based optical interferometric biosensor. Science, 1997, 278, 5339: 840–843

    Article  CAS  Google Scholar 

  4. Sailor MJ. Porous Silicon in Practice: Preparation, Characterization, and Applications. Weinheim: Wiley-VCH, 2012

    Google Scholar 

  5. Menna P, Di Francia G, Laferrara V. Porous silicon in solar-cells-a review and a description of its application as an AR coating. Sol Ener Mater Sol Cells, 1995, 37: 13–24

    Article  CAS  Google Scholar 

  6. Buriak JM. Organometallic chemistry on silicon and germanium surfaces. Chem Rev, 2002, 102: 1271–1308

    Article  CAS  Google Scholar 

  7. Linford MR, Chidsey CED. Alkyl monolayers covalently bonded to silicon surfaces. J Am Chem Soc, 1993, 115: 12631–12632

    Article  CAS  Google Scholar 

  8. Lees IN, Lin H, Canaria CA, Gurtner C, Sailor MJ, Miskelly GM. Chemical stability of porous silicon surfaces electrochemically modified with functional alkyl species. Langmuir, 2003, 19: 9812–9817

    Article  CAS  Google Scholar 

  9. Xia B, Xiao SJ, Wang J, Guo DJ. Stability improvement of porous silicon surface structures by grafting polydimethylsiloxane polymer monolayers. Thin Solid Films, 2005, 474: 306–309

    Article  CAS  Google Scholar 

  10. Han HM, Li HF, Xiao SJ. Improvement of the durability of porous silicon through functionalisation for biomedical applications. Thin Solid Films, 2011, 519: 3325–3333

    Article  CAS  Google Scholar 

  11. Li X, Bohn PW. Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl Phys Lett, 2000, 77: 2572–2574

    Article  CAS  Google Scholar 

  12. Chattopadhyay S, Bohn PW. Surfactant-induced modulation of light emission in porous silicon produced by metal-assisted electroless etching. Anal Chem, 2006, 78: 6058–6064

    Article  CAS  Google Scholar 

  13. Douani R, Si-Larbi K, Hadjersi T, Megouda N, Manseri A. Silver-assisted electroless etching mechanism of silicon. Phys Stat Sol (a), 2008, 205: 225–230

    Article  CAS  Google Scholar 

  14. Guo DJ, Xiao SJ, Xia B, Wei S, Pei J, Pan Y, You XZ, Gu ZZ, Lu Z. Reaction of porous silicon with both end-functionalized organic compounds bearing α-bromo and ω-carboxy groups for immobilization of biomolecules. J Phy Chem B, 2005, 109: 20620–20628

    Article  CAS  Google Scholar 

  15. Chen L, Chen ZT, Wang J, Xiao SJ, Lu ZH, Gu ZZ, Kang L, Chen J, Wu PH, Tang YC, Liu JN. Gel-pad microarrays templated by patterned porous silicon for dual-mode detection of proteins. Lab Chip, 2009, 9: 756–760

    Article  CAS  Google Scholar 

  16. Jia P, Tang YC, Xu N, Lu W, Xiao SJ, Liu JN. Covalently derivatized NTA microarrays on porous silicon for multi-mode detection of His-tagged proteins. Sci China Chem, 2011, 54: 526–535

    Article  Google Scholar 

  17. Li HF, Han HM, Wu YG, Xiao SJ. Biological functionalization and patterning of porous silicon prepared by Pt-assisted chemical etching. Appl Surf Sci, 2010, 256: 4048–4051

    Article  CAS  Google Scholar 

  18. Wang C, Yan Q, Liu HB, Zhou XH, Xiao SJ. Different EDC/NHS activation mechanisms between PAA and PMAA brushes and the following amidation reactions. Langmuir, 2011, 27: 12058–12068

    Article  CAS  Google Scholar 

  19. Wang C, Jia XM, Jiang C, Zhuang GN, Yan Q, Xiao SJ. DNA microarray fabricated on poly(acrylic acid) brushes-coated porous silicon by in-situ rolling circle amplification. Analyst, 2012, 137: 4539–4545

    Article  CAS  Google Scholar 

  20. Wang C, Zhou XH, Han HM, Xiao SJ. Optimization of metal-assisted etchant components for fabrication of porous silicon. Chin J Inorg Chem, 2011, 12: 2332–2338

    Google Scholar 

  21. Linford MR, Fenter P, Eisenberger PM, Chidsey CED. Alkyl monolayers on silicon prepared from 1-alkenes and hydrogen-terminated silicon. J Am Chem Soc, 1995, 117: 3145–3155

    Article  CAS  Google Scholar 

  22. Effenberger F, Götz G, Bidlingmaier B, Wezstein M. Photoactivated preparation and patterning of self-assembled monolayers with 1-alkenes and aldehydes on silicon hydride surfaces. Angew Chem Int Ed, 1998, 37: 2462–2464

    Article  CAS  Google Scholar 

  23. Lee EJ, Bitner TW, Ha JS, Shane MJ, Sailor MJ. Light-induced reactions of porous and single-crystal Si surfaces with carboxylic acids. J Am Chem Soc, 1996, 118: 5375–5382

    Article  CAS  Google Scholar 

  24. Warntjes M, Vieillard C, Ozanam F, Chazalviel JN. Electrochemical methoxylation of porous silicon surface. J Electrochem Soc, 1995, 142: 4138–4142

    Article  CAS  Google Scholar 

  25. Boukherroub R, Morin S, Sharpe P, Wayner DDM. Insights into the formation mechanisms of Si-OR monolayers from the thermal reactions of alcohols and aldehydes with Si(111)-H1. Langmuir, 2000, 16: 7429–7434

    Article  CAS  Google Scholar 

  26. Asanuma H, Lopinski GP, Yu HZ. Kinetic control of the photochemical reactivity of hydrogen-terminated silicon with bifunctional molecules. Langmuir, 2005, 21: 5013–5018

    Article  CAS  Google Scholar 

  27. Buriak JM, Allen MJ. Lewis acid mediated functionalization of porous silicon with substituted alkenes and alkynes. J Am Chem Soc, 1998, 120: 1339–1340

    Article  CAS  Google Scholar 

  28. Buriak JM, Stewart MP, Geders TW, Allen MJ, Choi HC, Smith J, Raftery D, Canham LT. Lewis acid mediated hydrosilylation on porous silicon surfaces. J Am Chem Soc, 1999, 121: 11491–11502

    Article  CAS  Google Scholar 

  29. Huck LA, Buriak JM. Toward a mechanistic understanding of exciton-mediated hydrosilylation on nanocrystalline silicon. J Am Chem Soc, 2012, 134: 489–497

    Article  CAS  Google Scholar 

  30. Sieval AB, Linke R, Zuilhof H, Sudhölter EJR. High-quality alkyl monolayers on silicon surfaces. Adv Mater, 2000, 12: 1457–1460

    Article  CAS  Google Scholar 

  31. Sun QY, de Smet LCPM, van Lagen B, Wright A, Zuilhof H, Sudholter EJR. Covalently attached monolayers on hydrogen-terminated Si(100): extremely mild attachment by visible light. Angew Chem Int Ed, 2004, 43: 1352–1355

    Article  CAS  Google Scholar 

  32. Qin GT, Santos CM, Zhang W, Li Y, Kumar A, Erasquin UJ, Liu K, Muradov P, Trautner BW, Cai CZ. Biofunctionalization on alkylated silicon substrate surfaces via “click” chemistry. J Am Chem Soc, 2010, 132: 16432–16441

    Article  CAS  Google Scholar 

  33. Michalak DJ, Amy SR, Aureau D, Dai M, Estève A, Chabel Y. Nanopatterning Si(111) surfaces as a selective surface-chemistry route. Nat Mater, 2010, 9: 266–271

    CAS  Google Scholar 

  34. Fidélis A, Ozanam F, Chazalviel JN. Fully methylated, atomically flat (111) silicon surface. Surf Sci, 2000, 444: L7–10

    Article  Google Scholar 

  35. Li Y, Calder S, Yaffe O, Cahen D, Haick H, Kronik L, Zuilhof H. Hybrids of organic molecules and flat, oxide-free silicon: high-density monolayers, electronic properties, and functionalization. Langmuir, 2012, 28: 9920–9929

    Article  CAS  Google Scholar 

  36. Huck LA, Buriak JM. Toward a mechanistic understanding of exciton-mediated hydrosilylation on nanocrystalline silicon. J Am Chem Soc, 2012, 134: 489–497

    Article  CAS  Google Scholar 

  37. Zhong YL, Bernasek SL. Direct photochemical functionalization of Si(111) with undecenol. Langmuir, 2011, 27: 1796–1802

    Article  CAS  Google Scholar 

  38. Brodsky MH, Cardona M, Cuomo JJ. Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering. Phys Rev B, 1977, 16: 3556–3571

    Article  CAS  Google Scholar 

  39. Chabal YJ, Higashi GS, Raghavachari K, Burrows VA. Infrared spectroscopy of Si(111) and Si(100) surfaces after HF treatment: Hydrogen termination and surface morphology. J Vac Sci Technol A, 1989, 7: 2104–2109

    Article  CAS  Google Scholar 

  40. Perrine KA, Teplyakov AV. Reactivity of selectively terminated single crystal silicon surfaces. Chem Soc Rev, 2010, 39: 3256–7324

    Article  CAS  Google Scholar 

  41. Czeslik C, Jackler G, Hazlett T, Gratton E, Steitz R, Wittemann A, Ballauff M. Salt-induced protein resistance of polyelectrolyte brushes studied using fluorescence correlation spectroscopy and neutron reflectometry. Phys Chem Chem Phys, 2004, 6: 5557–5563

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShouJun Xiao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, M., Han, H. & Xiao, S. High hydrosilylation efficiency of porous silicon SiHx species produced by Pt-assisted chemical etching for biochip fabrication. Sci. China Chem. 56, 1152–1163 (2013). https://doi.org/10.1007/s11426-013-4849-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4849-1

Keywords

Navigation