Science China Chemistry

, Volume 56, Issue 4, pp 443–450 | Cite as

Microwave-assisted hydrothermal synthesis of cube-like Ag-Ag2MoO4 with visible-light photocatalytic activity

  • ZhaoQian Li
  • XueTai ChenEmail author
  • Zi-Ling Xue
Articles Special Topic Nano and Functional Materials


Cube-like Ag-Ag2MoO4 composite has been successfully prepared in the presence of PVP (polyvinylpyrrolidone) via a facile microwave-assisted hydrothermal process. Studies of its photocatalytic performance in the decomposition of RhB indicate that the cube-like Ag-Ag2MoO4 composite exhibits good catalytic activities under visible-light irradiation. The face that Ag promotes the absorption of visible light may be attributed to the surface plasmon resonance. Further XRD characterization after recycle photocatalytic tests confirms that partial Ag+ ions in Ag2MoO4 have been reduced to metallic Ag. Reaction temperature, reaction time and the amount of PVP have also been studied and found to play crucial roles in the formation of the cube-like microstructures.


microwave hydrothermal photocatalytic activity surface plasmon resonance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhang LZ, Djerdj I, Cao MH, Antonietti M, Niederberger M. Nonaqueous sol-gel synthesis of a nanocrystalline InNbO4 visible-light photocatalyst. Adv Mater, 2007, 19(16): 2083–2086CrossRefGoogle Scholar
  2. 2.
    Dai G, Yu J, Liu G. A new approach for photocorrosion in inhibition of Ag2CO3 photocatalyst with highly visible-light-responsive reactivity. J Phys Chem C, 2012, 116(29): 15519–15524CrossRefGoogle Scholar
  3. 3.
    Tong H, Ouyang SX, Bi YP, Umezawa N, Oshikiri, M, Ye, JH. Nano-photocatalytic materials: Possibilities and challenges. Adv Mater, 2012, 24(2): 229–251CrossRefGoogle Scholar
  4. 4.
    Wang P, Huang BB, Qin XY, Zhang XY, Dai Y, Wei JY, Whangbo, MH. Ag@AgCl: A highly efficient and stable photocatalyst active under visible light. Angew Chem Int Ed, 2008, 47(41): 7931–7933CrossRefGoogle Scholar
  5. 5.
    Zhang Z, Wang W, Wang L, Sun YM. Enhancement of visible-light photocatalysis by coupling with narrow-band-gap semiconductor: A case study on Bi2S3/Bi2WO6. ACS Appl Mater Inter, 2012, 4(2): 593–597CrossRefGoogle Scholar
  6. 6.
    Huang Y, Wu JH, Huang ML, Lin JM, Huang YF. Influence of surfactants on the morphology and photocatalytic activity of Bi2WO6 by hydrothermal synthesis. Sci China Chem, 2011, 54(1): 211–216CrossRefGoogle Scholar
  7. 7.
    Liu W, Wang XF, Cao LX, Su G, Zhang L, Wang YG. Microe-mulsion synthesis and photocatalytic activity of visible light-active BiVO4 nanoparticles. Sci China Chem, 2011, 54(5): 724–729CrossRefGoogle Scholar
  8. 8.
    Meng AL, Qiu YY, Zhang LN, Xu X, Li ZJ. Sunlight responsive photocatalysts: AgBr/ZnO hybrid nanomaterial. Sci China Chem, 2012, 55(10): 2128–2133CrossRefGoogle Scholar
  9. 9.
    Yang W, Zhang L, Hu Y, Zhong YJ, Wu HB, Lou XW. Microwave-assisted synthesis of porous Ag2S-Ag hybrid nanotubes with high visible-light photocatalytic activity. Angew Chem Int Ed, 2012, 51(46): 11501–11504CrossRefGoogle Scholar
  10. 10.
    Linic S, Christopher P, Ingram DB. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater, 2011, 10(12): 911–921CrossRefGoogle Scholar
  11. 11.
    Murdoch M, Waterhouse GIN, Nadeem MA, Metson JB, Keane MA, Howe RF, Llorca J, Idriss H. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat Chem, 2011, 3(6): 489–492Google Scholar
  12. 12.
    Scholl JA, Koh AL, Dionne JA. Quantum plasmon resonances of individual metallic nanoparticles. Nature, 2012, 483(7390): 421–427CrossRefGoogle Scholar
  13. 13.
    Xiang QJ, Yu JG, Cheng B, Ong HC. Microwave-hydrothermal preparation and visible-light photoactivity of plasmonic photocatalyst Ag-TiO2 nanocomposite hollow spheres. Chem-Asian J, 2010, 5(6): 1466–1474Google Scholar
  14. 14.
    Yu JG, Dai GP, Huang BB. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays. J Phys Chem C, 2009, 113(37): 16394–16401CrossRefGoogle Scholar
  15. 15.
    Han Z, Ren L, Cui Z, Chen CQ, Pan HB, Chen JZ. Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance. Appl Catal B-Environ, 2012, 126(0): 298–305CrossRefGoogle Scholar
  16. 16.
    Arora AK, Nithya R, Misra S, Yagi T. Behavior of silver molybdate at high-pressure. J Solid State Chem, 2012, 196(0): 391–397CrossRefGoogle Scholar
  17. 17.
    Bhattacharya S, Ghosh A. Silver molybdate nanoparticles, nanowires, and nanorods embedded in glass nanocomposites. Phys Rev B, 2007, 75(9): 092103CrossRefGoogle Scholar
  18. 18.
    Cheng L, Shao Q, Shao M, Wei XW, Wu ZC. Photoswitches of one-dimensional Ag2MO4 (M = Cr, Mo, and W). J Phys Chem C, 2009, 113(5): 1764–1768CrossRefGoogle Scholar
  19. 19.
    Deb B, Ghosh A. Microstructural study of Ag2S doped silver molybdate glass-nanocomposites. J Alloy Compd, 2011, 509(5): 2256–2262CrossRefGoogle Scholar
  20. 20.
    Sun YG, Xia YN. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298(5601): 2176–2179CrossRefGoogle Scholar
  21. 21.
    Zeng HC. Synthesis and self-assembly of complex hollow materials. J Mater Chem, 2011, 21(21): 7511–7526CrossRefGoogle Scholar
  22. 22.
    Medina ME, Platero-Prats AE, Snejko N, Rojas, A, Monge A, Gandara F, Gutierrez-Puebla E, Camblor MA. Towards inorganic porous materials by design: Looking for new architectures. Adv Mater, 2011, 23(44): 5283–5292CrossRefGoogle Scholar
  23. 23.
    Singh DP, Sirota B, Talpatra S, Kohli P, Rebholz C, Aouadi SM. Broom-like and flower-like heterostructures of silver molybdate through ph controlled self assembly. J Nanopart Res, 2012, 14(4): 781–792CrossRefGoogle Scholar
  24. 24.
    Gonzalez E, Arbiol J, Puntes VF. Carving at the nanoscale: Sequential galvanic exchange and kirkendall growth at room temperature. Science, 2011, 334(6061): 1377–1380CrossRefGoogle Scholar
  25. 25.
    Guan MY, Zhu GX, Shang TM, Xu Z, Sun JH, Zhou QF. PVP-mediated synthesis of MPO4 (M = Y, Er) hollow mesocrystal cubes via a ripening process. CrystEngCommun, 2012, 14: 6540–6547CrossRefGoogle Scholar
  26. 26.
    Han L, Wang P, Zhu CZ, Zhai YM, Dong, SJ. Facile solvothermal synthesis of cube-like Ag@AgCl: A highly efficient visible light photocatalyst. Nanoscale, 2011, 3(7): 2931–2935CrossRefGoogle Scholar
  27. 27.
    Ding XL, Kan CX, Mo B, Ke SL, Cong B, Xu LH, Zhu JJ. Synthesis of polyhedral Ag nanostructures by a PVP-assisted hydrothermal method. J Nanopart Res, 2012, 14(8): 1000–1009CrossRefGoogle Scholar
  28. 28.
    Deng Z, Zhu HB, Peng B, Chen H, Sun YF, Gang, XD, Jin, PJ, Wang JL. Synthesis of PS/Ag nanocomposite spheres with catalytic and antibacterial activities. ACS Appl Mater Inter, 2012, 4(10): 5625–5632CrossRefGoogle Scholar
  29. 29.
    Yang H, Liu Y, Shen QH, Chen LF, You WH, Wang XM, Sheng JS. Mesoporous silica microcapsule-supported Ag nanoparticles fabricated via nano-assembly and its antibacterial properties. J Mater Chem, 2012, 22(45): 24132–24138CrossRefGoogle Scholar
  30. 30.
    Liu Y, Hu JC, Li JL. Synthesis and photoactivity of the highly efficient Ag species/TiO2 nanoflakes photocatalysts. J Alloy Compd, 2011, 509(16): 5152–5158CrossRefGoogle Scholar
  31. 31.
    Zhang MY, Shao CL, Mu JB, Zhang ZY, Guo ZC, Zhang P, Liu YC. One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity. CrystEngComm, 2012, 14(2): 605–612CrossRefGoogle Scholar
  32. 32.
    Shi HF, Li ZS, Kou JH, Ye JH, Zou ZG. Facile synthesis of single-crystalline Ag2V4O11 nanotube material as a novel visible-light-sensitive photocatalyst. J Phys Chem C, 2011, 115(1): 145–151CrossRefGoogle Scholar
  33. 33.
    Wang H, Li Y, Li C, He L, Guo L. Facile synthesis of AgBr nanocubes for highly efficient visible light photocatalysts. CrystEngComm, 2012, 14(22): 7563–7566CrossRefGoogle Scholar
  34. 34.
    Song HJ, Jia XH, Yang XF, Tang H, Li Y, Su YT. Controllable synthesis of monodisperse polyhedral nickel nanocrystals. CrystEngComm, 2012, 14(2): 405–410CrossRefGoogle Scholar
  35. 35.
    Xu CW, Liu YY, Huang BB, Li H, Qin XY, Zhang XY, Dai Y. Preparation, characterization, and photocatalytic properties of silver carbonate. Appl Surf Sci, 2011, 257(20): 8732–8736CrossRefGoogle Scholar
  36. 36.
    Luan JF, Wang S, Ma K, Li YM, Pan BC. Structural property and catalytic activity of new In2YbSbO7 and Gd2YbSbO7 nanocatalysts under visible light irradiation. J Phys Chem C, 2010, 114(20): 9398–9407CrossRefGoogle Scholar
  37. 37.
    Yi ZG, Ye JH, Kikugawa N, Kako, T, Ouyang SX, Stuart-Williams H, Yang H, Cao JY, Luo WJ, Li ZS, Liu Y, Withers RL. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat Mater, 2010, 9(7): 559–564CrossRefGoogle Scholar
  38. 38.
    Wang P, Huang BB, Zhang XY, Qin XY, Jin H, Dai Y, Wang ZY, Wei JY, Zhan J, Wang SY, Wang JP, Whangbo MH. Highly efficient visible-light plasmonic photocatalyst Ag@AgBr. Chem-Eur J, 2009, 15(8): 1821–1824CrossRefGoogle Scholar
  39. 39.
    Ren J, Wang WZ, Sun SM, Zhang L, Chang J. Enhanced photo-catalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation. Appl Catal B-Environ, 2009, 92(1–2): 50–55CrossRefGoogle Scholar
  40. 40.
    Wang WG, Cheng B, Yu JG, Liu G, Fan WH. Visible-light photocatalytic activity and deactivation mechanism of Ag3PO4 spherical particles. Chem-Asian J, 2012, 7(8): 1902–1908CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina
  2. 2.Department of ChemistryThe University of TennesseeKnoxvilleUSA

Personalised recommendations