Skip to main content
Log in

Synthesis and characterization of an environmentally friendly PHBV/PEG copolymer network as a phase change material

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Novel environmentally friendly poly(hydroxybutyrate-co-hydroxyvalerate) and poly(ethylene glycol) (PHBV/PEG) copolymer networks were synthesized through free-radical solution polymerization with PHBV diacrylate (PHBVDA) and polyethylene glycol diacrylate (PEGDA) as macromers. The molecular structure of PHBV/PEG copolymer network was characterized by Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance (1H NMR). The morphology of the PHBV/PEG copolymer network was characterized by polarization optical microscopy. Thermal energy storage properties, thermal reliability and thermal stability were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis. The results indicated that the PHBV/PEG copolymer network hindered the growth of PEG crystalline segments or PHBV segments. PHBV/PEG copolymer network had a higher latent heat enthalpy, which didn’t reduce with the components of PHBV increased. Moreover, PHBV/PEG copolymer network still had good thermal stability even at 300 °C. These results suggested that such environmentally friendly copolymer network would have wide applications in phase change energy storage materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo J, Xiang H, Wang Q, Hu C, Zhu M, Li L. Preparation of poly(decaglycerol-co-ethylene glycol) copolymer as phase change material. Energ Buildings, 2012, 48: 206–210

    Article  Google Scholar 

  2. Aydin AA, Aydin A. High-chain fatty acid esters of 1-hexadecanol for low temperature thermal energy storage with phase change materials. Sol Energ Mat Sol C, 2012, 96: 93–100

    Article  CAS  Google Scholar 

  3. Chen CZ, Liu SS, Liu WM, Zhao YY, Lu YZ. Synthesis of novel solid-liquid phase change materials and electrospinning of ultrafine phase change fibers. Sol Energ Mat Sol C, 2012, 96: 202–209

    Article  CAS  Google Scholar 

  4. Pasupathy A, Velraj R, Seeniraj RV. Phase change material-based building architecture for thermal management in residential and commercial establishments. Renew Sust Energ Rev, 2008, 12: 39–64

    Article  Google Scholar 

  5. Tyagi VV, Kaushik SC, Tyagi SK, Akiyama T. Development of phase change materials based microencapsulated technology for buildings: A review. Renew Sust Energ Rev, 2011, 15: 1373–1391

    Article  CAS  Google Scholar 

  6. Al-Hinti I, Al-Ghandoor A, Maaly A, Abu Naqeera I, Al-Khateeb Z, Al-Sheikh O. Experimental investigation on the use of water-phase change material storage in conventional solar water heating systems. Energ Convers Manage, 2010, 51: 1735–1740

    Article  CAS  Google Scholar 

  7. Chang MW, Stride E, Edirisinghe M. A novel process for drug encapsulation using a liquid to vapour phase change material. Soft Matter, 2009, 5: 5029–5036

    Article  CAS  Google Scholar 

  8. Wang W, Yang X, Fang Y, Ding J. Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials. Appl Energ, 2009, 86: 170–174

    Article  CAS  Google Scholar 

  9. Karaman S, Karaipekli A, Sari A, Bicer A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol Energ Mat Sol C, 2011, 95: 1647–1653

    Article  CAS  Google Scholar 

  10. Feng LL, Zheng J, Yang HZ, Guo YL, Li W, Li XG. Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials. Sol Energ Mat Sol C, 2011, 95: 644–650

    Article  CAS  Google Scholar 

  11. Şentürk SB, Kahraman D, Alkan C, Gokce I. Biodegradable PEG/cellulose, PEG/agarose and PEG/chitosan blends as shape stabilized phase change materials for latent heat energy storage. Carbohyd Polym, 2011, 84: 141–144

    Article  Google Scholar 

  12. ZANG YN, DING EY. Energy storage properties of phase change materials prepared from PEGCPP. Chinese Chem Lett, 2005, 16: 1375–1378

    CAS  Google Scholar 

  13. Cao Q, Liu P. Crystalline-amorphous phase transition of hyperbranched polyurethane phase change materials for energy storage. J Mater Sci, 2007, 42: 5661–5665

    Article  CAS  Google Scholar 

  14. Fan L, Khodadadi JM. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renew Sust Energ Rev, 2011, 15: 24–46

    Article  CAS  Google Scholar 

  15. Sari A, Alkan C, Biçer A. Synthesis and thermal properties of polystyrene-graft-PEG copolymers as new kinds of solid-solid phase change materials for thermal energy storage. Mater Chem Phys, 2012, 133: 87–94

    Article  CAS  Google Scholar 

  16. Li WD, Ding EY. Preparation and characterization of cross-linking PEG/MDI/PE copolymer as solid-solid phase change heat storage material. Sol Energ Mat Sol C, 2007, 91: 764–768

    Article  CAS  Google Scholar 

  17. Cheng S, Chen Y, Yu H, Zhu MF. Synthesis and properties of a spin able phase change material CDA-IPDI-MPEG. e-Polymers, 2008, 136: 1–11

    Google Scholar 

  18. Zhou XM. Preparation and characterization of PEG/MDI/PVA copolymer as solid-solid phase change heat storage material. J Appl Polym Sci, 2009, 113: 2041–2045

    Article  CAS  Google Scholar 

  19. Xiang H, Chen S, Wang S, Peng C, Zhu MF. Synthesis and Characterization of Comb-like P(MPEGA-co-AM) Copolymer as Phase Change Materials, Chinese J Chem, 2012, 30: 2247–2251

    Article  CAS  Google Scholar 

  20. Pielichowska K, Pielichowski K. Biodegradable PEO/cellulose-based solid-solid phase change materials. Polym Advan Technol, 2011, 22: 1633–1641

    Article  CAS  Google Scholar 

  21. Li Y, Liu R, Huang Y. Synthesis and phase transition of cellulose-graft-poly(ethylene glycol) copolymers. J Appl Polym Sci, 2008, 110: 1797–1803

    Article  CAS  Google Scholar 

  22. Li X, Liu KL, Li J, Chan LM, Lim CT, Goh SH. Synthesis, characterization, and morphology studies of biodegradable amphiphilic poly (R)-3-hydroxybutyrate-alt-poly(ethylene glycol) multiblock copolymers. Biomacromolecules, 2006, 7: 3112–3119

    Article  CAS  Google Scholar 

  23. Babinot J, Renard E, Langlois V. Preparation of clickable poly(3-hydroxyalkanoate) (PHA): Application to poly(ethylene glycol) (PEG) graft copolymers synthesis. Macromol Rapid Comm, 2010, 31: 619–624

    Article  CAS  Google Scholar 

  24. Koseva NS, Novakov CP, Rydz J, Kurcok P, Kowalczuk M. Synthesis of aPHB-PEG Brush Co-polymers through ATRP in a Macroinitiator-Macromonomer feed system and their characterization. Des Monomers Polym, 2010, 13: 579–595

    Article  CAS  Google Scholar 

  25. Wang YY, Lu LX, Shi JC, Wang HF, Xiao ZD, Huang NP. Introducing RGD peptides on PHBV films through PEG-containing cross-linkers to improve the biocompatibility. Biomacromolecules, 2011, 12: 551–559

    Article  CAS  Google Scholar 

  26. Liu Q, Shyr TW, Tung CH, Deng B, Zhu M. Block copolymers containing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly (epsilon-caprolactone) units: Synthesis, characterization and thermal degradation. Fiber Polym, 2011, 12: 848–856

    Article  CAS  Google Scholar 

  27. Liu Q, Zhu M, Chen Y. Synthesis and characterization of multi-block copolymers containing poly [(3-hydroxybutyrate)-co-(3-hydro-xyvalerate)] and poly(ethylene glycol). Polym Int, 2010, 59: 842–850

    CAS  Google Scholar 

  28. Guo J, Xiang HX, Gong XY, Zhang YP. Preparation and performance of the hydrolyzate of waste polyacrylonitrile fiber/ poly(ethylene glycol) graft copolymerization. Energ Source Part A, 2011, 33: 1067–1075

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MeiFang Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, H., Wang, S., Wang, R. et al. Synthesis and characterization of an environmentally friendly PHBV/PEG copolymer network as a phase change material. Sci. China Chem. 56, 716–723 (2013). https://doi.org/10.1007/s11426-013-4837-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4837-5

Keywords

Navigation