Skip to main content
Log in

Modeling mass transfer of CO2 in brine at high pressures by chemical potential gradient

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

To investigate long-term CO2 behavior in geological formations and quantification of possible CO2 leaks, it is crucial to investigate the potential mobility of CO2 dissolved in brines over a wide range of spatial and temporal scales and density distributions in geological media. In this work, the mass transfer of aqueous CO2 in brines has been investigated by means of a chemical potential gradient model based on non-equilibrium thermodynamics in which the statistical associating fluid theory equation of state was used to calculate the fugacity coefficient of CO2 in brine. The investigation shows that the interfacial concentration of aqueous CO2 and the corresponding density both increase with increasing pressure and decreasing temperature; the effective diffusion coefficients decrease initially and then increase with increasing pressure; and the density of the CO2-disolved brines increases with decreasing CO2 pressure in the CO2 dissolution process. The aqueous CO2 concentration profiles obtained by the chemical potential gradient model are considerably different from those obtained by the concentration gradient model, which shows the importance of considering non-ideality, especially when the pressure is high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachu S. Sequestration of CO2 in geological media: Criteria and approach for site selection in response to climate change. Energy Convers. Manage, 2000, 41: 953–970

    Article  CAS  Google Scholar 

  2. Schrag DP. Preparing to capture carbon. Science, 2007, 315: 812–813

    Article  CAS  Google Scholar 

  3. Firoozabadi A, Cheng P. Prospects for subsurface CO2 sequestration. AIChE J, 2010, 56: 1398–1405

    Article  CAS  Google Scholar 

  4. Bruant RG Jr, Guswa AJ, Celia MA, Peters CA. Safe storage of CO2 in deep saline aquifers. Environ Sci Technol, 2002, 36: 240A–245A

    Article  CAS  Google Scholar 

  5. Hassanzadeh H, Pooladi-Darvish M, Keith DW. Accelerating CO2 dissolution in saline aquifers for geological storage — Mechanistic and sensitivity studies. Energy Fuels, 2009, 23: 3328–3336

    Article  CAS  Google Scholar 

  6. Bachu S, Adams JJ. Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution. Energy Convers Manage, 2003, 44: 3151–3175

    Article  CAS  Google Scholar 

  7. Michael K, Golab A, Shulakova V, Ennis-King J, Allinson G, Sharma S, Aiken T. Geological storage of CO2 in saline aquifers — A review of the experience from existing storage operations. Int J Greenh Gas Con, 2010, 4: 659–667

    Article  CAS  Google Scholar 

  8. Yang C, Gu Y. Accelerated mass transfer of CO2 in reservoir brine due to density-driven natural convection at high pressures and elevated temperatures. Ind Eng Chem Res, 2006, 45: 2430–2436

    Article  CAS  Google Scholar 

  9. Gilfillan SMV, Lollar BS, Holland G, Blagburn D, Stevens S, Schoell M, Cassidy M, Ding Z, Zhou Z, Lacrampe-Couloume G, Ballentine CJ. Solubility trapping in formation water as dominant CO2 sink in natural gas fields. Nature, 2009, 458: 614–618

    Article  CAS  Google Scholar 

  10. Keith DW, Giardina JA, Morgan MG, Wilson EJ. Regulating the underground injection of CO2. Environ Sci Technol, 2005, 39: 499A–505A

    Article  CAS  Google Scholar 

  11. Oldenburg CM. Transport in geologic CO2 storage systems. Transp Porous Med, 2010, 82: 1–2

    Article  CAS  Google Scholar 

  12. Weir GJ, White SP, Kissling WM. Reservoir storage and containment of greenhouse gases. Energy Convers Manage, 1995, 36: 531–534

    Article  CAS  Google Scholar 

  13. Teng H, Yamasaki A. Mass transfer of CO2 through liquid CO2-water interface. Int J Heat Mass Transfer, 1998, 41: 4315–4325

    Article  CAS  Google Scholar 

  14. Ogasawara K, Yamasaki A, Teng H. Mass transfer from CO2 drops traveling in high-pressure and low-temperature water. Energy Fuels, 2001, 15: 147–150

    Article  CAS  Google Scholar 

  15. Arendt B, Dittmar D, Eggers R. Interaction of interfacial convection and mass transfer effects in the system CO2-water. Int J Heat Mass Transfer, 2004, 47: 3649–3657

    Article  CAS  Google Scholar 

  16. Farajzadeh R, Salimi H, Zitha PLJ, Bruining H. Numerical simulation of density-driven natural convection in porous media with application for CO2 injection projects. Int J Heat Mass Transfer, 2007, 50: 5054–5064

    Article  CAS  Google Scholar 

  17. Farajzadeh R, Barati A, Delil HA, Bruining J, Zitha PLJ. Mass transfer of CO2 into water and surfactant solutions. Pet Sci Technol, 2007, 25: 1493–1511

    Article  CAS  Google Scholar 

  18. Farajzadeh R, Zitha PLJ, Bruining J. Enhanced mass transfer of CO2 into water: Experiment and modeling. Ind Eng Chem Res, 2009, 48: 6423–6431

    Article  CAS  Google Scholar 

  19. Kneafsey TJ, Pruess K. Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection. Transp Porous Med, 2010, 82: 123–139

    Article  CAS  Google Scholar 

  20. Kocherginsky N, Zhang YK. Role of standard chemical potential in transport through anisotropic media and asymmetrical membranes. J Phys Chem B, 2003, 107: 7830–7837

    Article  CAS  Google Scholar 

  21. Liu C, Ji Y, Shao Q, Feng X, Lu X. Thermodynamic analysis for synthesis of advanced materials. Molecular thermodynamics of complex systems. Struct Bond, 2009, 131: 193–270

    Article  CAS  Google Scholar 

  22. Ji YH, Ji XY, Liu C, Feng X, Lu XH. Modelling of mass transfer coupling with crystallization kinetics in microscale. Chem Eng Sci, 2010, 65: 2649–2655

    Article  CAS  Google Scholar 

  23. Lu XH, Ji YH, Liu HL. Non-equilibrium thermodynamics analysis and its application in interfacial mass transfer. Sci China Chem, 2011, 54: 1659–1666

    Article  CAS  Google Scholar 

  24. Ji XY, Tan SP, Adidharma H, Radosz M. SAFT1-RPM approximation extended to phase equilibria and densities of CO2-H2O and CO2-H2O-NaCl systems. Ind Eng Chem Res, 2005, 44: 8419–8427

    Article  CAS  Google Scholar 

  25. Ji YH, Ji XY, Feng X, Liu C, Lu LH, Lu XH. Progress in the study on the phase equilibria of the CO2-H2O and CO2-H2O-NaCl systems. Chin J Chem Eng, 2007, 15: 439–448

    Article  CAS  Google Scholar 

  26. Adidharma H, Radosz M. Prototype of an engineering equation of state for heterosegmented polymers. Ind Eng Chem Res, 1998, 37: 4453–4462

    Article  CAS  Google Scholar 

  27. Adidharma H, Radosz M. Square-well SAFT equation of state for homopolymeric and heteropolymeric fluids. Fluid Phase Equilib, 1999, 158: 165–174

    Article  Google Scholar 

  28. Tan SP, Adidharma H, Radosz M. Statistical associating fluid theory coupled with restricted primitive model to represent aqueous strong electrolytes. Ind Eng Chem Res, 2005, 44: 4442–4452

    Article  CAS  Google Scholar 

  29. Ji XY, Tan SP, Adidharma H, Radosz M. Statistical associating fluid theory coupled with restricted primitive model to represent aqueous strong electrolytes: Multiple-salt solutions. Ind Eng Chem Res, 2005, 44: 7584–7590

    Article  CAS  Google Scholar 

  30. Prausnitz JM, Lichtenthaler RN, de Azevedo EG. Molecular Thermodynamics of Fluid-phase Equilibria (3rd edition). New Jersey: Prentice Hall PTR, 1999

    Google Scholar 

  31. Crank J. The Mathematics of Diffusion (2nd edition). Oxford: Clarendon Press, 1975

    Google Scholar 

  32. Tewes F, Boury F. Formation and rheological properties of the supercritical CO2-water pure interface. J Phys Chem B, 2005, 109: 3990–3997

    Article  CAS  Google Scholar 

  33. Frank MJW, Kuipers JAM, van Swaaij WPM. Diffusion coefficients and viscosities of CO2 + H2O, CO2 + CH OH, NH3 + H2O, and NH3 + CH3OH liquid mixtures. J Chem Eng Data, 1996, 41: 297–302

    Article  CAS  Google Scholar 

  34. Rowley RL, Adams ME, Marshall TL, Oscarson JL, Wilding WV, Anderson DJ. Measurement of diffusion coefficients important in modeling the absorption rate of carbon dioxide into aqueous N-methyldiethanolamine. J Chem Eng Data, 1997, 42: 310–317

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoHua Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, Y., Ji, X., Lu, X. et al. Modeling mass transfer of CO2 in brine at high pressures by chemical potential gradient. Sci. China Chem. 56, 821–830 (2013). https://doi.org/10.1007/s11426-013-4834-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4834-8

Keywords

Navigation