Skip to main content
Log in

Degradation of organic pollutants by visible light synergistic electro-Fenton oxidation process

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Visible light irradiation combined with homogeneous iron and/or hydrogen peroxide to degrade organic dye rhodamine B (RhB) and small molecular compound 2,4-dichlorophenol (2,4-DCP) in a home-made bottle reactor was assessed. The concentration of oxidize species, Fe3+ and Fe2+ were determined during the degradation process. The results demonstrated that visible light irradiation combined with electro-Fenton improved the degradation efficiency. Moreover, both RhB and 2,4-DCP were mineralized during visible light synergistic electro-Fenton oxidation process. 95.0% TOC (total organic carbon) removal rate of RhB occurred after 90 min and 96.7% of COD (chemical oxygen demand) removal rate after 65 min of irradiation. 91.3% TOC removal rate of 2,4-DCP occurred after 16 h of irradiation and 99.9% COD removal rate occurred after 12 h of illumination. The degradation and oxidation process was dominated by the hydroxyl radical (·OH) generated in the system. Both the impressed electricity and dye sensitization by visible light facilitated the conversion between Fe3+ and Fe2+, thus, improving Fenton reaction efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neumann GT, Hicks JC. Novel hierarchical cerium-incorporated MFI zeolite catalysts for the catalytic fast pyrolysis of lignocellulosic biomass. ACS Catal, 2012, 2: 642–646

    Article  CAS  Google Scholar 

  2. Panizza M, Cerisola G. Electrocatalytic materials for the electrochemical oxidation of synthetic dyes. Appl Catal B: Environ, 2007, 29: 95–101

    Article  Google Scholar 

  3. Tuan PA, Sillanpää M. Effect of freeze/thaw conditions, polyelectro lyte addition, and sludge loading on sludge electro-dewatering process. Chem Eng J, 2010, 164: 85–91

    Article  CAS  Google Scholar 

  4. Tokumura M, Ohta A, Znad HT, Kawase Y. UV light assisted decolorization of dark brown colored coffee effluent by photo-Fenton reaction. Water Res, 2006, 40: 3775–3781

    Article  CAS  Google Scholar 

  5. Garcia-Segura S, Almeida LC, Bocchi N, Brillas N. Solar photoelectro-Fenton degradation of paracetamol using a flow plant with a Pt/air-diffusion cell coupled with a compound parabolic collector: Process optimization by response surface methodology. J Hazard Mater, 2011, 194: 109–118

    Article  CAS  Google Scholar 

  6. Masomboon N, Ratanatamskul C, Lu MC. Chemical oxidation of 2,6-dimethylaniline by electrochemically generated Fenton’s reagent. J Hazard Mater, 2010, 176: 92–98

    Article  CAS  Google Scholar 

  7. Justino C, Marques AG, Rodrigues D, Silva L, Duarte AC, Rocha-Santos T, Freitas AC. Evaluation of tertiary treatment by fungi, enzymatic and photo-Fenton oxidation on the removal of phenols from a kraft pulp mill effluent: A comparative study. Biodegradation, 2011, 22: 267–274

    Article  CAS  Google Scholar 

  8. Chan KH, Chu W. Model applications and intermediates quantification of atrazine degradation by UV-enhanced fenton process. J Agric Food Chem, 2006, 54: 1804–1813

    Article  CAS  Google Scholar 

  9. He J, Ma WH, He JJ, Zhao JC, Yu JC. Photooxidation of azo dye in aqueous dispersions of H2O2/α-FeOOH. Appl Catal B: Environ, 2002, 39: 211–220

    Article  CAS  Google Scholar 

  10. Feng JY, Hu XJ, Yue PL. Novel bentonite clay-based Fe-nanocomposite as a heterogeneous catalyst for photo-fenton discoloration and mineralization of orange II. Environ Sci Technol, 2004, 38: 269–275

    Article  CAS  Google Scholar 

  11. Wang SL, Fang YF, Yang Y, Liu JZ, Deng AP, Zhao XR, Huang YP. Catalysis of organic pollutant photodegradation by metal phthalocyanines immobilized on TiO2@SiO2. Chin Sci Bull, 2011, 56: 969–976

    Article  CAS  Google Scholar 

  12. Yang J, Chen DX, Deng AP, Fang YF, Luo GF, Li DJ, Li RP, Huang YP. Visible light-induced N-doped TiO2 nanoparticles for the degradation of microcystin-LR. Sci China Chem, 2010, 53: 1793–1800

    Article  CAS  Google Scholar 

  13. Selvam K, Murugan M, Swaminathan M. Enhanced heterogeneous ferrioxalate photo-Fenton degradation of reactive orange 4 by solar light. Sol Energy Mater Sol Cells, 2005, 89: 61–74

    Article  CAS  Google Scholar 

  14. Kurt U, Apaydin O, Gonullu MT. Reduction of COD in wastewater from an organized tannery industrial region by Electro-Fenton process. J Hazard Mater, 2007, 143: 33–40

    Article  CAS  Google Scholar 

  15. Brillas E, Sires I, Oturan MA. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction Chemistry. Chem Rev, 2009, 109: 6570–6631

    Article  CAS  Google Scholar 

  16. Gogate PR, Pandit AB. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res, 2004, 8: 501–551

    Article  CAS  Google Scholar 

  17. Sires I, Centellas F, Garrido JA, Rodriguez RM, Arias C, Cabot PL, Brillas E. Mineralization of clofibric acid by electrochemical advanced oxidation processes using a boron-doped diamond anode and Fe2+ and UVA light as catalysts. Appl Catal B: Environ, 2007, 72: 373–381

    Article  CAS  Google Scholar 

  18. Brillas E, Calpe JC, Casado J. Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Res, 2000, 34: 2253–2262

    Article  CAS  Google Scholar 

  19. Brillas E, Mur E, Sauleda R, Sànchez L, Peral J, Domènech X, Casado J. Aniline mineralization by AOP’s: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Appl Catal B: Environ, 1998, 16: 31–42.

    Article  CAS  Google Scholar 

  20. Flox C, Ammar S, Arias C, Brillas E, Vargas-Zavala AV, Abdelhedi R. Electro-Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium. Appl Catal B: Environ, 2006, 67: 93–104

    Article  CAS  Google Scholar 

  21. Flox C, Cabot P, Centellas F, Garrido JA, Rodríguez RM, Arias C, Brillas E. Solar photoelectro-Fenton degradation of cresols using a flow reactor with a boron-doped diamond anode. Appl Catal B: Environ, 2007, 75: 17–28

    Article  CAS  Google Scholar 

  22. Malato S, Blanco J, Alarcon DC, Maldonado MI, Fernandez-Ibanez; Gernjak W. Photocatalytic decontamination and disinfection of water with solar collectors. Catal Today, 2007, 122: 137–149

    Article  CAS  Google Scholar 

  23. Munaf E, Zein R, Kurniadi I. The use of rice husk for removal of phenol from wastewater as studied using 4-aminoantipyrine spectrophotometric method. Environ Technol, 1997, 18: 355–358

    Article  CAS  Google Scholar 

  24. Song W J, Ma W H, Ma J H, Chen CC, Zhao JC. Photochemical oscillation of Fe(II)/Fe(III) induced by periodic flux of dissolved organic matter. Environ Sci Technol, 2005, 39: 3121–3127

    Article  CAS  Google Scholar 

  25. Ishibashi K, Fujishima A, Watanabe T, Hashimoto K. Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem Commun, 2000, 2: 207–210

    Article  CAS  Google Scholar 

  26. Bader H, Sturzenegger V, Hoigne J. Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N-diethyl-p-phenylenediamine (DPD). Water Res, 1988, 22: 1109–1115

    Article  CAS  Google Scholar 

  27. Huang YP, Liu DF, Zhang SY, Zhang DL, Ma WH, Zhao JC. Fenton photocatalytic degradation of organic dye under visible irradiation. Chem J Chinese Univ, 2005, 26: 2273–2278

    CAS  Google Scholar 

  28. Sires I, Arias C, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Brillas E. Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton. Chemosphere, 2007, 66: 1660–1669

    Article  CAS  Google Scholar 

  29. Song W J, Chen C C, Ma J H, Ma WH, Tang YL, Zhao JC, Huang YP, Xu YM, Zang L. Decomposition of hydrogen peroxide driven by photochemical cycling of iron species in clay. Environ Sci Technol, 2006, 40: 618–624

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YingPing Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Wang, Q., Fang, Y. et al. Degradation of organic pollutants by visible light synergistic electro-Fenton oxidation process. Sci. China Chem. 56, 813–820 (2013). https://doi.org/10.1007/s11426-012-4809-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4809-1

Keywords

Navigation