Skip to main content
Log in

Rebinding kinetics of dissociated amino acid ligand and carbon monoxide to ferrous microperoxidase-11 in aqueous solution

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The rebinding kinetics of an amino acid ligand to ferrous microperoxidase-11 (MP11) after photolysis of aggregated ferrous MP11 was measured in aqueous solution with femtosecond transient visible absorption spectroscopy. The kinetics of CO rebinding to ferrous MP11 after photolysis of MP11CO was also measured in aqueous solution with femtosecond transient visible absorption spectroscopy. From these measurements, we found that either Val-11 or Lys-13 rebinds to ferrous MP11 exponentially with an 8 picosecond time constant in aggregated ferrous MP11 solution and that CO rebinds to ferrous MP11 nonexponentially with subnanosecond time scale in MP11CO solution. The kinetics of both the amino acid and CO rebinding to ferrous MP11 in MP11 system mimics that in carbon monoxide oxidation activator protein (CooA) or carboxymethyl cytochrome c (CmCytC) system. We also measured the kinetics of CO rebinding to ferrous MP11 in aqueous solution at different MP11CO concentrations and found that MP11CO concentration has an obvious effect on the kinetics of CO rebinding to ferrous MP11, where both the germinate yield and rate of CO rebinding to ferrous MP11 increase with the increase of MP11CO concentration. These findings suggested that the picosecond amino acid ligand rebinding process could disturb the proximal heme-ligand structure that possibly leads to the subnanosecond CO rebinding kinetics in MP11CO, CooACO and CmCytCCO systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Austin RH, Beeson KW, Eisenstein L, Frauenfelder H, Gunsalus IC. Dynamics of ligand binding to myoglobin. Biochemistry, 1975, 14: 5355–5373

    Article  CAS  Google Scholar 

  2. Henry ER, Sommer JH, Hofrichter J, Eaton WA. Geminate recombination of carbon monoxide to myoglobin. J Mol Biol, 1983, 166: 443–451

    Article  CAS  Google Scholar 

  3. Ansari A, Jones CM, Henry ER, Hofrichter J, Eaton WA. The role of solvent viscosity in the dynamics of protein conformational changes. Science, 1992, 256: 1796–1798

    Article  CAS  Google Scholar 

  4. Balasubramanian S, Lambright DG, Boxer SG. Perturbations of the distal heme pocket in human myoglobin mutants probed by Infrared-spectroscopy of bound CO — Correlation with ligand-binding kinetics. Proc Natl Acad Sci USA, 1993, 90: 4718–4722

    Article  CAS  Google Scholar 

  5. Balasubramanian S, Lambright DG, Marden MC, Boxer SG. Co recombination to human myoglobin mutants in glycerol water solutions. Biochemistry, 1993, 32: 2202–2212

    Article  CAS  Google Scholar 

  6. Bourgeois D, Vallone B, Schotte F, Arcovito A, Miele AE, Sciara G, Wulff M, Anfinrud P, Brunori M. Complex landscape of protein structural dynamics unveiled by nanosecond Laue crystallography. Proc Natl Acad Sci USA, 2003, 100: 8704–8709

    Article  CAS  Google Scholar 

  7. Brunori M, Vallone B, Cutruzzola F, Travaglini-Allocatelli C, Berendzen J, Chu K, Sweet RM, Schlichting I. The role of cavities in protein dynamics: Crystal structure of a photolytic intermediate of a mutant myoglobin. Proc Natl Acad Sci USA, 2000, 97: 2058–2063

    Article  CAS  Google Scholar 

  8. Cao WX, Ye X, Georgiev GY, Berezhna S, Sjodin T, Demidov AA, Wang W, Sage JT, Champion PM. Proximal and distal influences on ligand binding kinetics in microperoxidase and heme model compounds. Biochemistry, 2004, 43: 7017–7027

    Article  CAS  Google Scholar 

  9. Cao WX, Ye X, Sjodin T, Christian JF, Demidov AA, Berezhna S, Wang W, Barrick D, Sage JT, Champion PM. Investigations of photolysis and rebinding kinetics in myoglobin using proximal ligand replacements. Biochemistry, 2004, 43: 11109–11117

    Article  CAS  Google Scholar 

  10. Carver TE, Rohlfs RJ, Olson JS, Gibson QH, Blackmore RS, Springer BA, Sligar SG. Analysis of the kinetic barriers for ligand binding to sperm whale myoglobin using site-directed mutagenesis and laser photolysis techniques. J Biol Chem, 1990, 265: 20007–20020

    CAS  Google Scholar 

  11. Franzen S. Spin-dependent mechanism for diatomic ligand binding to heme. Proc Natl Acad Sci USA, 2002, 99: 16754–16759

    Article  CAS  Google Scholar 

  12. Franzen S. Carbonmonoxy rebinding kinetics in H93G myoglobin: separation of proximal and distal side effects. J Phys Chem B, 2002, 106: 4533–4542

    Article  CAS  Google Scholar 

  13. Franzen S, Fritsch K, Brewer SH. Experimental observation of anharmonic coupling of the heme-doming and iron-ligand out-of-plane vibrational modes confirmed by density functional theory. J Phys Chem B, 2002, 106: 11641–11646

    Article  CAS  Google Scholar 

  14. Frauenfelder H, Sligar SG, Wolynes PG. The energy landscapes and motions of proteins. Science, 1991, 254: 1598–1603

    Article  CAS  Google Scholar 

  15. Huang Y, Marden MC, Lambry JC, Fontaineaupart MP, Pansu R, Martin JL, Poyart C. Photolysis of the histidine-heme-carbon monoxide complex. J Am Chem Soc, 1991, 113: 9141–9144

    Article  CAS  Google Scholar 

  16. Ionascu D, Gruia F, Ye X, Yu AC, Rosca F, Beck C, Demidov AA, Olson JS, Champion PM. Temperature-dependent studies of NO recombination to heme and heme proteins. J Am Chem Soc, 2005, 127: 16921–16934

    Article  CAS  Google Scholar 

  17. Kholodenko Y, Gooding EA, Dou Y, Ikeda-Saito M, Hochstrasser RM. Heme protein dynamics revealed by geminate nitric oxide recombination in mutants of iron and cobalt myoglobin. Biochemistry, 1999, 38: 5918–5924

    Article  CAS  Google Scholar 

  18. Kriegl JM, Nienhaus K, Deng PC, Fuchs J, Nienhaus GU. Ligand dynamics in a protein internal cavity. Proc Natl Acad Sci USA, 2003, 100: 7069–7074

    Article  CAS  Google Scholar 

  19. Lambright DG, Balasubramanian S, Boxer SG. Dynamics of protein relaxation in site-specific mutants of human myoglobin. Biochemistry, 1993, 32: 10116–10124

    Article  CAS  Google Scholar 

  20. Lee T, Park J, Kim J, Joo S, Lim M. Dynamics of CO rebinding to protoheme in viscous solutions. Bull Korean Chem Soc, 2009, 30: 177–182

    Article  CAS  Google Scholar 

  21. Lim MH, Jackson TA, Anfinrud PA. Modulating carbon monoxide binding affinity and kinetics in myoglobin: The roles of the distal histidine and the heme pocket docking site. J Biol Inorg Chem, 1997, 2: 531–536

    Article  CAS  Google Scholar 

  22. Lim MH, Jackson TA, Anfinrud PA. Ultrafast rotation and trapping of carbon monoxide dissociated from myoglobin. Nature Struct Biol, 1997, 4: 209–214

    Article  CAS  Google Scholar 

  23. Miers JB, Postlewaite JC, Cowen BR, Roemig GR, Lee IYS, Dlott DD. Preexponential-Limited solid state chemistry: Ultrafast rebinding of a heme-ligand complex in a glass or protein matrix. J Chem Phys, 1991, 94: 1825–1836

    Article  CAS  Google Scholar 

  24. Miers JB, Postlewaite JC, Zyung T, Chen S, Roemig GR, Wen X, Dlott DD, Szabo A. Diffusion can explain the nonexponential rebinding of carbon monoxide to protoheme. J Chem Phys, 1990, 93: 8771–8776

    Article  CAS  Google Scholar 

  25. Nienhaus K, Deng PC, Kriegl JM, Nienhaus GU. Structural dynamics of myoglobin: Spectroscopic and structural characterization of ligand docking sites in myoglobin mutant L29W. Biochemistry, 2003, 42: 9633–9646

    Article  CAS  Google Scholar 

  26. Nienhaus K, Deng PC, Kriegl JM, Nienhaus GU. Structural dynamics of myoglobin: Effect of internal cavities on ligand migration and binding. Biochemistry, 2003, 42: 9647–9658

    Article  CAS  Google Scholar 

  27. Nienhaus K, Deng PC, Olson JS, Warren JJ, Nienhaus GU. Structural dynamics of myoglobin-Ligand migration and binding in valine 68 mutants. J Biol Chem, 2003, 278: 42532–42544

    Article  CAS  Google Scholar 

  28. Olson JS, Phillips GN. Kinetic pathways and barriers for ligand binding to myoglobin. J Biol Chem, 1996, 271: 17593–17596

    Article  CAS  Google Scholar 

  29. Park J, Lee T, Lim M. Viscosity-dependent dynamics of CO rebinding to microperoxidase-8 in glycerol/water solution. J Phys Chem B, 2010, 114: 10897–10904

    Article  CAS  Google Scholar 

  30. Schotte F, Lim MH, Jackson TA, Smirnov AV, Soman J, Olson JS, Phillips GN, Wulff M, Anfinrud PA. Watching a protein as it functions with 150-ps time-resolved X-ray crystallography. Science, 2003, 300: 1944–1947

    Article  CAS  Google Scholar 

  31. Scott EE, Gibson QH, Olson JS. Mapping the pathways for O2 entry into and exit from myoglobin. J Biol Chem, 2001, 276: 5177–5188

    Article  CAS  Google Scholar 

  32. Springer BA, Sligar SG, Olson JS, Phillips GN. Mechanisms of ligand recognition in myoglobin. Chem Rev, 1994, 94: 699–714

    Article  CAS  Google Scholar 

  33. Steinbach PJ, Ansari A, Berendzen J, Braunstein D, Chu K, Cowen BR, Ehrenstein D, Frauenfelder H, Johnson JB, Lamb DC. Ligand binding to heme proteins: Connection between dynamics and function. Biochemistry, 1991, 30: 3988–4001

    Article  CAS  Google Scholar 

  34. Tian WD, Sage JT, Srajer V, Champion PM. Relaxation dynamics of myoglobin in solution. Phys Rev Lett, 1992, 68: 408–411

    Article  CAS  Google Scholar 

  35. Traylor TG, Magde D, Taube DJ, Jongeward KA, Bandyopadhyay D, Luo JK, Walda KN. Geminate recombination of carbon monoxide complexes of hemes and heme proteins. J Am Chem Soc, 1992, 114: 417–429

    Article  CAS  Google Scholar 

  36. Walda KN, Liu XY, Sharma VS, Magde D. Geminate recombination of diatomic ligands CO, O2 and NO with Myoglobin. Biochemistry, 1994, 33: 2198–2209

    Article  CAS  Google Scholar 

  37. Ye X, Yu AC, Georgiev GY, Gruia F, Ionascu D, Cao WX, Sage JT, Champion PM. CO rebinding to protoheme: Investigations of the proximal and distal contributions to the geminate rebinding barrier. J Am Chem Soc, 2005, 127: 5854–5861

    Article  CAS  Google Scholar 

  38. Ye X, Ionascu D, Gruia F, Yu AC, Benabbas A, Champion PM. Temperature-dependent heme kinetics with nonexponential binding and barrier relaxation in the absence of protein conformational substates. Proc Natl Acad Sci USA, 2007, 104: 14682–14687

    Article  CAS  Google Scholar 

  39. Srajer V, Reinisch L, Champion PM. Protein fluctuations, distributed coupling, and the binding of ligands to heme proteins. J Am Chem Soc, 1988, 110: 6656–6670

    Article  CAS  Google Scholar 

  40. Zhang ZY, Benabbas A, Ye X, Yu AC, Champion PM. Measurements of heme relaxation and ligand recombination in strong magnetic fields. J Phys Chem B, 2009, 113: 10923–10933

    Article  CAS  Google Scholar 

  41. Marques HM, Perry CB. Hemepeptide models for hemoproteins: The behavior of N-acetylmicroperoxidase-11 in aqueous solution. J Inorg Biochem, 1999, 75: 281–291

    Article  CAS  Google Scholar 

  42. Othman S, Desbois A. Resonance Raman investigation of lysine and N-acetylmethionine complexes of ferric and ferrous microperoxidase — Influences of the axial ligation on the heme c structure. Eur Biophys J, 1998, 28: 12–25

    Article  CAS  Google Scholar 

  43. Ricoux R, Lecomte S, Policar C, Boucher JL, Mahy JP. Spectroscopic investigation of isonitrile complexes of ferric and ferrous microperoxidase 8. J Inorg Biochem, 2005, 99: 1165–1173

    Article  CAS  Google Scholar 

  44. Vashi PR, Marques HM. The coordination of imidazole and substituted pyridines by the hemeoctapeptide N-acetyl-ferromicroperoxidase-8 (Fe(II)NAcMP8). J Inorg Biochem, 2004, 98: 1471–1482

    Article  CAS  Google Scholar 

  45. Munro OQ, Marques HM. Heme-peptide models for hemoproteins. 1. Solution chemistry of N-acetylmicroperoxidase-8. Inorg Chem, 1996, 35: 3752–3767

    Article  CAS  Google Scholar 

  46. Karunakaran V, Benabbas A, Youn H, Champion PM. Vibrational coherence spectroscopy of the heme domain in the CO-sensing transcriptional activator CooA. J Am Chem Soc, 2011, 133: 18816–18827

    Article  CAS  Google Scholar 

  47. Kumazaki S, Nakajima H, Sakaguchi T, Nakagawa E, Shinohara H, Yoshihara K, Aono S. Dissociation and recombination between ligands and heme in a CO-sensing transcriptional activator CooA — A flash photolysis study. J Biol Chem, 2000, 275: 38378–38383

    Article  CAS  Google Scholar 

  48. Rubtsov IV, Zhang TQ, Nakajima H, Aono S, Rubtsov GI, Kumazaki S, Yoshihara K. Conformational dynamics of the transcriptional regulator CooA protein studied by subpicosecond mid-infrared vibrational spectroscopy. J Am Chem Soc, 2001, 123: 10056–10062

    Article  CAS  Google Scholar 

  49. Kim J, Park J, Lee T, Lim M. Dynamics of ultrafast rebinding of CO to carboxymethyl cytochrome c. J Phys Chem B, 2009, 113: 260–266

    Article  CAS  Google Scholar 

  50. Silkstone G, Jasaitis A, Vos MH, Wilson MT. Geminate carbon monoxide rebinding to a c-type haem. Dalton Transactions, 2005, 3489–3494

  51. Silkstone G, Jasaitis A, Wilson MT, Vos MH. Ligand dynamics in an electron transfer protein-Picosecond geminate recombination of carbon monoxide to heme in mutant forms of cytochrome c. J Biol Chem, 2007, 282: 1638–1649

    Article  CAS  Google Scholar 

  52. Zhu RX, Li X, Zhao XS, Yu AC. Photophysical properties of Atto655 dye in the presence of guanosine and tryptophan in aqueous solution. J Phys Chem B, 2011, 115: 5001–5007

    Article  CAS  Google Scholar 

  53. Li X, Zhu RX, Yu AC, Zhao XS. Ultrafast photoinduced electron transfer between tetramethylrhodamine and guanosine in aqueous solution. J Phys Chem B, 2011, 115: 6265–6271

    Article  CAS  Google Scholar 

  54. Sun QF, Lu R, Yu AC. Structural heterogeneity in the collision complex between organic dyes and tryptophan in aqueous solution. J Phys Chem B, 2012, 116: 660–666

    Article  CAS  Google Scholar 

  55. Youn H, Conrad M, Chung SY, Roberts GP. Roles of the heme and heme ligands in the activation of CooA, the CO-sensing transcriptional activator. Biochem Biophys Res Commun, 2006, 348: 345–350

    Article  CAS  Google Scholar 

  56. Wang W, Ye X, Demidov AA, Rosca F, Sjodin T, Cao WX, Sheeran M, Champion PM. Femtosecond multicolor pump-probe spectroscopy of ferrous cytochrome c. J Phys Chem B, 2000, 104: 10789–10801

    Article  CAS  Google Scholar 

  57. Negrerie M, Cianetti S, Vos MH, Martin JL, Kruglik SG. Ultrafast heme dynamics in ferrous versus ferric cytochrome c studied by time-resolved resonance Raman and transient absorption spectroscopy. J Phys Chem B, 2006, 110: 12766–12781

    Article  CAS  Google Scholar 

  58. Cianetti S, Negrerie M, Vos MH, Martin JL, Kruglik SG. Photodissociation of heme distal methionine in ferrous cytochrome c revealed by subpicosecond time-resolved resonance Raman spectroscopy. J Am Chem Soc, 2004, 126: 13932–13933

    Article  CAS  Google Scholar 

  59. Ye X, Demidov AA, Champion PM. Measurements of the photodissociation quantum yields of MbNO and MbO2 and the vibrational relaxation of the six-coordinate heme species. J Am Chem Soc, 2002, 124: 5914–5924

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AnChi Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, R., Lu, R. & Yu, A. Rebinding kinetics of dissociated amino acid ligand and carbon monoxide to ferrous microperoxidase-11 in aqueous solution. Sci. China Chem. 56, 230–237 (2013). https://doi.org/10.1007/s11426-012-4788-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4788-2

Keywords

Navigation