Science China Chemistry

, Volume 55, Issue 12, pp 2471–2484 | Cite as

Development and applications of the ABEEM fluctuating charge molecular force field in the ion-containing systems

Feature Articles Progress of Projects Supported by NSFC


The microscopic mechanisms of ion hydration and ion selectivity in biomolecular systems are long-standing research topics, in which the difficulty is how to reasonably and accurately describe the ion-water and ion-biomolecule interactions. This paper summarizes the development and applications of the atom-bond electronegativity equalization fluctuating charge force field model, ABEEM/MM, in the investigations of ion hydration, metalloproteins and ion-DNA bases systems. Based on high-level quantum chemistry calculations, the parameters were optimized and the molecular potential functions were constructed and applied to studies of structures, activities, energetics, and thermodynamic and kinetic properties of these ion-containing systems. The results show that the performance of ABEEM/MM is generally better than that of the common force fields, and its accuracy can reach or approach that of the high-level ab initio MP2 method. These studies provide a solid basis for further investigations of ion selectivity in biomolecular systems, the structures and properties of metalloproteins and other related ion-containing systems.


ion hydration metalloproteins fluctuating charge force field ABEEM/MM (atom-bond electronegativity equalization method/molecular mechanics) quantum chemical calculation molecular dynamics simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holm RH, Kennepohl P, Solomon EI. Structural and functional aspects of metal sites in biology. Chem Rev, 1996, 96: 2239–2314CrossRefGoogle Scholar
  2. 2.
    Rempe S, Roux B. Editorial for special issue on ions. Biophys Chem, 2006, 124: 169–170CrossRefGoogle Scholar
  3. 3.
    Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science, 1998, 280: 69–77CrossRefGoogle Scholar
  4. 4.
    Anson L. Ion channels. Nature, 2006, 440: 439CrossRefGoogle Scholar
  5. 5.
    Lo Nostro P, Ninham BW. Hofmeister phenomena: An update on ion specificity in biology. Chem Rev, 2012, 112: 2286–2322CrossRefGoogle Scholar
  6. 6.
    Finkelstein J. Metalloproteins. Nature, 2009, 460: 813CrossRefGoogle Scholar
  7. 7.
    Andreini C, Bertini I, Cavallaro G, Holliday G, Thornton J. Metal ions in biological catalysis: From enzyme databases to general principles. J Biol Inorg Chem, 2008, 13: 1205–1218CrossRefGoogle Scholar
  8. 8.
    Hinton JF, Amis ES. Solvation numbers of ions. Chem Rev, 1971, 71: 627–674CrossRefGoogle Scholar
  9. 9.
    Marcus Y. Ionic radii in aqueous solutions. Chem Rev, 1988, 88: 1475–1498CrossRefGoogle Scholar
  10. 10.
    Marlow GE, Perkyns JS, Pettitt BM. Salt effects in peptide solutions: Theory and simulations. Chem Rev, 1993, 93: 2503–2521CrossRefGoogle Scholar
  11. 11.
    Ohtaki H, Radnal T. Structure and dynamics of hydrated ions. Chem Rev, 1993, 93: 1157–1204CrossRefGoogle Scholar
  12. 12.
    Enderby JE. Ion solvation via neutron scattering. Chem Soc Rev, 1995, 24: 159–168CrossRefGoogle Scholar
  13. 13.
    Omta AW, Kropman MF, Woutersen S, Bakker HJ. Negligible effect of ions on the hydrogen-bond structure in liquid water. Science, 2003, 301: 347–349CrossRefGoogle Scholar
  14. 14.
    Ansell S, Barnes AC, Mason PE, Neilson GW, Ramos S. X-ray and neutron scattering studies of the hydration structure of alkali ions in concentrated aqueous solutions. Biophys Chem, 2006, 124: 171–179CrossRefGoogle Scholar
  15. 15.
    Marcus Y. Effect of Ions on the structure of water: Structure making and breaking. Chem Rev, 2009, 109: 1346–1370CrossRefGoogle Scholar
  16. 16.
    Vinogradov EV, Smirnov PR, Trostin VN. Structure of hydrated complexes formed by metal ions of Groups I–III of the periodic table in aqueous electrolyte solutions under ambient conditions. Russ Chem Bull, 2003, 52:1–19CrossRefGoogle Scholar
  17. 17.
    Mason PE, Neilson GW, Enderby JE, Saboungi ML, Dempsey CE, MacKerell AD, Brady JW. The structure of aqueous guanidinium chloride solutions. J Am Chem Soc, 2004, 126: 11462–11470CrossRefGoogle Scholar
  18. 18.
    Dill KA, Truskett TM, Vlachy V, Hribar-Lee B. Modeling water, the hydrophobic effect, and ion solvation. Annu Rev Biophs Biom, 2005, 34: 173–199CrossRefGoogle Scholar
  19. 19.
    Chang TM, Dang LX. Recent advances in molecular simulations of ion solvation at liquid interfaces. Chem Rev, 2006, 106: 1305–1322CrossRefGoogle Scholar
  20. 20.
    Jungwirth P, Tobias DJ. Specific ion effects at the air/water interface. Chem Rev, 2006, 106: 1259–1281CrossRefGoogle Scholar
  21. 21.
    Marcus Y, Hefter G. Ion pairing. Chem Rev, 2006, 106: 4585–4621CrossRefGoogle Scholar
  22. 22.
    Marcos ES. Theoretical chemistry of metal and single ions in solutions. Theor Chem Acc, 2006, 115: 75–76CrossRefGoogle Scholar
  23. 23.
    Collins KD. Ions in water: Characterizing the forces that control chemical processes and biological structure. Biophys Chem, 2007, 128: 95–104CrossRefGoogle Scholar
  24. 24.
    Miller DJ, Lisy JM. Hydrated alkali-metal cations: Infrared spectroscopy and ab initio calculations of M+(H2O)x=2–5Ar cluster ions for M = Li, Na, K, and Cs. J Am Chem Soc, 2008, 130: 15381–15392CrossRefGoogle Scholar
  25. 25.
    Ben-Amotz D, Underwood R. Unraveling water’s entropic mysteries: A unified view of nonpolar, polar, and ionic hydration. Acc Chem Res, 2008, 41: 957–967CrossRefGoogle Scholar
  26. 26.
    Tobias DJ, Hemminger JC. Getting specific about specific ion effects. Science, 2008, 319: 1197–1198CrossRefGoogle Scholar
  27. 27.
    Tielrooij KJ, Garcia-Araez N, Bonn M, Bakker HJ. Cooperativity in ion hydration. Science, 2010, 328: 1006–1009CrossRefGoogle Scholar
  28. 28.
    Bakker HJ. Structrual dynamics of aqueous salt solutions. Chem Rev 2008, 108: 1456–1473CrossRefGoogle Scholar
  29. 29.
    Kebarle P, Verkerk UH. Electrospray: From ions in solution to ions in the gas phase, what we know now. Mass Spectrom Rev, 2009, 28: 898–917CrossRefGoogle Scholar
  30. 30.
    Zhao YL, Meot-ner M, Gonzalez C. Ionic hydrogen-bond networks and ion solvation. 1. An efficient monte carlo/quantum mechanical method for structural search and energy computations: Ammonium/water. J Phys Chem A, 2009, 113: 2967–2974CrossRefGoogle Scholar
  31. 31.
    Zhang YJ, Cremer PS. Chemistry of Hofmeister anions and osmolytes. Annu Rev Phys Chem, 2010, 61: 63–83CrossRefGoogle Scholar
  32. 32.
    Simons J. Theoretical study of negative molecular ions. Annu Rev Phys Chem, 2011, 62: 107–128CrossRefGoogle Scholar
  33. 33.
    Caleman C, Hub JS, van Maaren PJ, van der Spoel D. Atomistic simulation of ion solvation in water explains surface preference of halides. P Nat Acad Sci USA, 2011, 108: 6838–6842CrossRefGoogle Scholar
  34. 34.
    Pham VT, Penfold TJ, van der Veen RM, Lima F, El Nahhas A, Johnson SL, Beaud P, Abela R, Bressler C, Tavernelli I, Milne CJ, Chergui M. Probing the transition from hydrophilic to hydrophobic solvation with atomic scale resolution. J Am Chem Soc, 2011, 133: 12740–12748CrossRefGoogle Scholar
  35. 35.
    Collins KD. Charge density-dependent strength of hydration and biological structure. Biophys J, 1997, 72: 65–76CrossRefGoogle Scholar
  36. 36.
    Fan Y, Chen X, Yang LJ, Cremer PS, Gao YQ. On the structure of water at the aqueous/air interface. J Phys Chem B, 2009, 113: 11672–11679CrossRefGoogle Scholar
  37. 37.
    Yang L, Fan Y, Gao YQ. Differences of cations and anions: Their hydration, surface adsorption, and impact on water dynamics. J Phys Chem B, 2011, 115: 12456–12465CrossRefGoogle Scholar
  38. 38.
    Prell JS, O’Brien JT, Williams ER. Structural and electric field effects of ions in aqueous nanodrops. J Am Chem Soc, 2011, 133: 4810–4818CrossRefGoogle Scholar
  39. 39.
    Zhao S, Jin Z, Wu J. New theoretical method for rapid prediction of solvation free energy in water. J Phys Chem B, 2011, 115: 6971–6975CrossRefGoogle Scholar
  40. 40.
    Bowron DT, Beret EC, Martin-Zamora E, Soper AK, Sánchez ME. Axial structure of the Pd(II) aqua ion in solution. J Am Chem Soc, 2012, 134: 962–967CrossRefGoogle Scholar
  41. 41.
    Netz RR, Horinek D. Progress in modeling of ion effects at the vapor/water interface. Annu Rev Phys Chem, 2012, 63: 401–418CrossRefGoogle Scholar
  42. 42.
    Noskov SY, Berneche S, Roux B. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature, 2004, 431: 830–834CrossRefGoogle Scholar
  43. 43.
    Yu HB, Noskov SY, Roux B. Two mechanisms of ion selectivity in protein binding sites. P Natl Acad Sci USA, 2010, 107: 20329–20334CrossRefGoogle Scholar
  44. 44.
    Bostick DL, Brooks CL. Selectivity in K+ channels is due to topological control of the permeant ion’s coordinated state. P Natl Acad Sci USA, 2007, 104: 9260–9265CrossRefGoogle Scholar
  45. 45.
    Varma S, Rempe SB. Tuning ion coordination architectures to enable selective partitioning. Biophys J, 2007, 93: 1093–1099CrossRefGoogle Scholar
  46. 46.
    Bucher D, Guidoni L, Carloni P, Rothlisberger U. Coordination numbers of K+ and Na+ ions inside the selectivity filter of the KcsA potassium channel: Insights from first principles molecular dynamics. Biophys J, 2010, 98: L47–L49CrossRefGoogle Scholar
  47. 47.
    Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B, 1993, 47: 558–561CrossRefGoogle Scholar
  48. 48.
    Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett, 1985, 55: 2471–2474CrossRefGoogle Scholar
  49. 49.
    Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by fast computing machines. J Chem Phys, 1953, 21: 1087–1092CrossRefGoogle Scholar
  50. 50.
    San-Roman ML, Hernandez-Cobos J, Saint-Martin H, Ortega-Blake I. A theoretical study of the hydration of Rb+ by Monte Carlo simulations with refined ab initio-based model potentials. Theor Chem Acc, 2010, 126: 197–211CrossRefGoogle Scholar
  51. 51.
    Vácha R, Megyes T, Bako I, Pusztai H, Jungwirth P. Benchmarking polarizable molecular dynamics simulations of aqueous sodium hydroxide by diffraction measurements. J Phys Chem A, 2009, 113: 4022–4027CrossRefGoogle Scholar
  52. 52.
    Field MJ, Bash PA, Karplus M. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comput Chem, 1990, 11: 700–733CrossRefGoogle Scholar
  53. 53.
    Cui Q, Karplus M. Molecular properties from combined QM/MM methods. I. Analytical second derivative and vibrational calculations. J Chem Phys, 2000, 112: 1133–1149CrossRefGoogle Scholar
  54. 54.
    Lin H, Truhlar D. QM/MM: What have we learned, where are we, and where do we go from here? Theor Chem Acc, 2007, 117: 185–199CrossRefGoogle Scholar
  55. 55.
    Hu H, Yang W. Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods. Annu Rev Phys Chem, 2008, 59: 573–601CrossRefGoogle Scholar
  56. 56.
    Senn HM, Thiel W. QM/MM methods for biomolecular systems. Angew Chem Int Ed, 2009, 48: 1198–1229CrossRefGoogle Scholar
  57. 57.
    Rao L, Cui Q, Xu X. Electronic properties and desolvation penalties of metal ions plus protein electrostatics dictate the metal binding affinity and selectivity in the copper efflux regulator. J Am Chem Soc, 2010, 132: 18092–18102CrossRefGoogle Scholar
  58. 58.
    Rode B, Hofer T, Randolf B, Schwenk C, Xenides D, Vchirawongkwin V. Ab initio quantum mechanical charge field (QMCF) molecular dynamics: a QM/MM-MD procedure for accurate simulations of ions and complexes. Theor Chemy Acc, 2006, 115: 77–85CrossRefGoogle Scholar
  59. 59.
    Rode BM, Hofer TS. How to access structure and dynamics of solutions: The capabilities of computational methods. Pure Appl Chem, 2006, 78: 525–539CrossRefGoogle Scholar
  60. 60.
    Ponder JW, Case DA. Force fields for protein simulations. Adv Prot Chem, 2003, 66: 27–85CrossRefGoogle Scholar
  61. 61.
    Orozco M, Perez A, Noy A, Luque FJ. Theoretical methods for the simulation of nucleic acids. Chem Soc Rev, 2003, 32: 350–364CrossRefGoogle Scholar
  62. 62.
    MacKerell AD. Empirical force fields for biological macromolecules: Overview and issues. J Comput Chem, 2004, 25: 1584–1604CrossRefGoogle Scholar
  63. 63.
    Chen AA, Pappu RV. Parameters of monovalent ions in the AMBER-99 forcefield: Assessment of inaccuracies and proposed improvements. J Phys Chem B, 2007, 111: 11884–11887CrossRefGoogle Scholar
  64. 64.
    Wick CD. Hydronium behavior at the air-water interface with a polarizable multistate empirical valence bond model. J Phys Chem C, 2012, 116: 4026–4038CrossRefGoogle Scholar
  65. 65.
    Duvail M, Vitorge P, Spezia R. Building a polarizable pair interaction potential for lanthanoids(III) in liquid water: A molecular dynamics study of structure and dynamics of the whole series. J Chem Phys, 2009, 130: 104501–13CrossRefGoogle Scholar
  66. 66.
    Jorgensen WL. Special issue on polarization. J Chem Theory Comput, 2007, 3: 1877CrossRefGoogle Scholar
  67. 67.
    Warshel A, Kato M, Pisliakov AV. Polarizable force fields: History, test cases, and prospects. J Chem Theory Comput, 2007, 3: 2034–2045CrossRefGoogle Scholar
  68. 68.
    Lopes PEM, Roux B, MacKerell AD. Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability: Theory and applications. Theor Chem Acc, 2009, 124: 11–28CrossRefGoogle Scholar
  69. 69.
    Case DA, Cheatham T, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ. The amber biomolecular simulation programs. J Comput Chem, 2005, 26: 1668–1688CrossRefGoogle Scholar
  70. 70.
    Joung IS, Cheatham TE. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B, 2008, 112: 9020–9041CrossRefGoogle Scholar
  71. 71.
    Joung IS, Cheatham TE. Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters. J Phys Chem B, 2009, 113: 13279–13290CrossRefGoogle Scholar
  72. 72.
    Wang J, Cieplak P, Li J, Hou T, Luo R, Duan Y. Development of polarizable models for molecular mechanical calculations i: Parameterization of atomic polarizability. J Phys Chem B, 2011, 115: 3091–3099CrossRefGoogle Scholar
  73. 73.
    Wang J, Cieplak P, Li J, Wang J, Cai Q, Hsieh MJ, Lei HX, Luo R, Duan Y. Development of polarizable models for molecular mechanical calculations ii: Induced dipole models significantly improve accuracy of intermolecular interaction energies. J Phys Chem B, 2011, 115: 3100–3111CrossRefGoogle Scholar
  74. 74.
    Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M. CHARMM: The biomolecular simulation program. J Comput Chem, 2009, 30: 1545–1614CrossRefGoogle Scholar
  75. 75.
    Lamoureux G, MacKerell AD, Roux B. A simple polarizable model of water based on classical Drude oscillators. J Chem Phys, 2003, 119: 5185–5197CrossRefGoogle Scholar
  76. 76.
    Lopes PEM, Lamoureux G, Mackerell AD. Polarizable empirical force field for nitrogen-containing heteroaromatic compounds based on the classical Drude oscillator. J Comput Chem, 2009, 30: 1821–1838CrossRefGoogle Scholar
  77. 77.
    Yu H, Mazzanti CL, Whitfield TW, Koeppe RE, Andersen OS, Roux B. Combined a experimental and theoretical study of ion solvation in liquid N-methylacetamide. J Am Chem Soc, 2010, 132: 10847–10856CrossRefGoogle Scholar
  78. 78.
    Yu HB, Whitfield TW, Harder E, Lamoureux G, Vorobyov I, Anisimov VM, MacKerell AD, Roux B. Simulating monovalent and divalent ions in aqueous solution using a drude polarizable force field. J Chem Theory Comput, 2010, 6: 774–786CrossRefGoogle Scholar
  79. 79.
    Baker CM, Anisimov VM, MacKerell AD. Development of CHARMM polarizable force field for nucleic acid bases based on the classical drude oscillator model. J Phys Chem B, 2011, 115: 580–596CrossRefGoogle Scholar
  80. 80.
    Orabi EA, Lamoureux G. Cation-π and π-π interactions in aqueous solution studied using polarizable potential models. J Chem Theory Comput, 2012, 8: 182–193CrossRefGoogle Scholar
  81. 81.
    Jorgensen WL, Jensen KP, Alexandrova AN. Polarization effects for hydrogen-bonded complexes of substituted phenols with water and chloride ion. J Chem Theory Comput, 2007, 3: 1987–1992CrossRefGoogle Scholar
  82. 82.
    Ponder JW, Wu CJ, Ren PY, Pande VS, Chodera JD, Schnieders MJ, Haque I, Mobley DL, Lambrecht DS, DiStasio RA, Head-Gordon M, Clark GNI, Johnson ME, Head-Gordon T. Current status of the amoeba polarizable force field. J Phys Chem B, 2010, 114: 2549–2564CrossRefGoogle Scholar
  83. 83.
    Grossfield A, Ren P, Ponder JW. Ion solvation thermodynamics from simulation with a polarizable force field. J Am Chem Soc, 2003, 125: 15671–15682CrossRefGoogle Scholar
  84. 84.
    Wu JC, Piquemal JP, Chaudret R, Reinhardt P, Ren PY. Polarizable molecular dynamics simulation of Zn(II) in water using the AMOEBA force field. J Chem Theory Comput, 2010, 6: 2059–2070CrossRefGoogle Scholar
  85. 85.
    Ren P, Wu C, Ponder JW. Polarizable atomic multipole-based molecular mechanics for organic molecules. J Chem Theory Comput, 2011, 7: 3143–3161CrossRefGoogle Scholar
  86. 86.
    Holt A, Karlström G. Induction correction of the molecular dipole moment for rotation of two or three dihedral angles. J Comput Chem, 2008, 29: 1905–1911CrossRefGoogle Scholar
  87. 87.
    Holt A, Bostrom J, Karlström G, Lindh R. A NEMO potential that includes the dipole-quadrupole and quadrupole-quadrupole polarizability. J Comput Chem, 2010, 31: 1583–1591Google Scholar
  88. 88.
    Kaminski GA, Ponomarev SY, Liu AB. Polarizable simulations with second-order interaction model-force field and software for fast polarizable calculations: Parameters for small model systems and free energy calculations. J Chem Theory Comput, 2009, 5: 2935–2943CrossRefGoogle Scholar
  89. 89.
    Yan TY, Wang YT, Knox C. On the structure of ionic liquids: comparisons between electronically polarizable and nonpolarizable models I. J Phys Chem B, 2010, 114: 6905–6921CrossRefGoogle Scholar
  90. 90.
    Rick SW, Stuart SJ, Berne BJ. Dynamical fluctuating charge force fields: Application to liquid water. J Chem Phys, 1994, 101: 6141–6156CrossRefGoogle Scholar
  91. 91.
    Banks JL, Kaminski GA, Zhou RH, Mainz DT, Berne BJ, Friesner RA. Parametrizing a polarizable force field from ab initio data. I. The fluctuating point charge model. J Chem Phys, 1999, 110: 741–754CrossRefGoogle Scholar
  92. 92.
    Chelli R, Procacci P. A transferable polarizable electrostatic force field for molecular mechanics based on the chemical potential equalization principle. J Chem Phys, 2002, 117: 9175–9189CrossRefGoogle Scholar
  93. 93.
    Patel S, Brooks CL. CHARMM fluctuating charge force field for proteins: I Parameterization and application to bulk organic liquid simulations. J Comput Chem, 2004, 25: 1–15CrossRefGoogle Scholar
  94. 94.
    Patel S, Mackerell AD, Brooks CL. CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. J Comput Chem, 2004, 25: 1504–1514CrossRefGoogle Scholar
  95. 95.
    Patel S, Brooks CL. Fluctuating charge force fields: Recent developments and applications from small molecules to macromolecular biological systems. Mol Simulat, 2006, 32: 231–249CrossRefGoogle Scholar
  96. 96.
    Warren GL, Patel S. Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: An assessment of simulation methodology and force field performance and transferability. J Chem Phys, 2007, 127: 064509CrossRefGoogle Scholar
  97. 97.
    Warren GL, Patel S. Electrostatic properties of aqueous salt solution interfaces: A comparison of polarizable and nonpolarizable ion models. J Phys Chem B, 2008, 112: 11679–11693CrossRefGoogle Scholar
  98. 98.
    Patel S, Davis JE, Bauer BA. Exploring ion permeation energetics in gramicidin a using polarizable charge equilibration force fields. J Am Chem Soc, 2009, 131: 13890–13891CrossRefGoogle Scholar
  99. 99.
    Bauer B, Patel S. Recent applications and developments of charge equilibration force fields for modeling dynamical charges in classical molecular dynamics simulations. Theor Chem Acc, 2012, 131: 1153CrossRefGoogle Scholar
  100. 100.
    Xie WS, Pu JZ, Mackerell AD, Gao JL. Development of a polarizable intermolecular potential function (PIPF) for liquid amides and alkanes. J Chem Theory Comput, 2007, 3: 1878–1889CrossRefGoogle Scholar
  101. 101.
    Mortier WJ, Ghosh SK, Shankar S. Electronegativity-equalization method for the calculation of atomic charges in molecules. J Am Chem Soc, 1986, 108: 4315–4320CrossRefGoogle Scholar
  102. 102.
    York DM, Yang W. A chemical potential equalization method for molecular simulations. J Chem Phys, 1996, 104: 159–172CrossRefGoogle Scholar
  103. 103.
    Toufar H, Baekelandt BG, Janssens GOA, Mortier WJ, Schoonheydt RA. Investigation of supramolecular systems by a combination of the electronegativity equalization method and a Monte Carlo simulation technique. J Physl Chem, 1995, 99: 13876–13885CrossRefGoogle Scholar
  104. 104.
    Chen B, Xing J, Siepmann JI. Development of polarizable water force fields for phase equilibrium calculations. J Phys Chem B, 2000, 104: 2391–2401CrossRefGoogle Scholar
  105. 105.
    Rick SW, Berne BJ. Dynamical fluctuating charge force fields: The aqueous solvation of amides, J Am Chem Soc, 1996, 118: 672–679CrossRefGoogle Scholar
  106. 106.
    Lamoureux G, Roux B. Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. J Physl Chem B, 2006, 110: 3308–3322CrossRefGoogle Scholar
  107. 107.
    Whitfield TW, Varma S, Harder E, Lamoureux G, Rempe SB, Roux B. Theoretical study of aqueous solvation of K+ comparing ab initio, polarizable, and fixed-charge models. J Chem Theory Comput, 2007, 3: 2068–2082CrossRefGoogle Scholar
  108. 108.
    Bostick DL, Brooks CL III. Selective complexation of K+ and Na+ in simple polarizable ion-ligating. J Am Chem Soc, 2010, 132: 13185–13187CrossRefGoogle Scholar
  109. 109.
    Stuart SJ, Berne BJ. Effects of polarizability on the hydration of the chloride ion. J Phys Chem, 1996, 100: 11934–11943CrossRefGoogle Scholar
  110. 110.
    Stuart SJ, Berne BJ. Surface curvature effects in the aqueous ionic solvation of the chloride ion. J Phys Chem A, 1999, 103: 10300–10307CrossRefGoogle Scholar
  111. 111.
    Shen EZ, Yang ZZ. Application of electronegativity equalization principle to calculation of atomic charges in a molecule. Chin Sci Bull, 1994, 39: 1195–1199Google Scholar
  112. 112.
    Yang ZZ, Shen EZ, Wang LH. A scheme for calculating atomic charge distribution in large molecules based on density functional theory and electronegativity equalization. THEOCHEM, 1994, 312: 167–173CrossRefGoogle Scholar
  113. 113.
    Yang ZZ, Shen EZ. Molecular electronegativity in density-functional theory (I) — Direct calculation of atomic charges in a molecule via electronegativity equalization principle. Sci China Ser B, 1995, 38: 521–528Google Scholar
  114. 114.
    Yang ZZ, Shen EZ, Molecular electronegativity in density functional theory (II) — Direct calculation of group electronegativity and the atomic charges in a group. Scie China Ser B, 1996, 39: 20–28Google Scholar
  115. 115.
    Yang ZZ, Wang CS. Atom-bond electronegativity equalization method. 1. Calculation of the charge distribution in large molecules. J Phys Chem A, 1997, 101: 6315–6321CrossRefGoogle Scholar
  116. 116.
    Wang CS, Li SM, Yang ZZ. Calculation of molecular energies by atom-bond electronegativity equalization method. Theochem, 1998, 430: 191–199CrossRefGoogle Scholar
  117. 117.
    Yang ZZ, Wang CS, Tang AQ, Molecular electronegativity in density functional theory (VI) — Atom-bond electronegativity equalization model. Sci China Ser B, 1998, 41: 331–336CrossRefGoogle Scholar
  118. 118.
    Wang CS, Yang ZZ. Atom-bond electronegativity equalization method. II. Lone-pair electron model. J Chem Phys, 1999, 110: 6189–6197CrossRefGoogle Scholar
  119. 119.
    Cong Y, Yang ZZ. General atom-bond electronegativity equalization method and its application in prediction of charge distributions in polypeptide. Chem Phys Lett, 2000, 316: 324–329CrossRefGoogle Scholar
  120. 120.
    Wang CS, Zhao DX, Yang ZZ. Calculation of the linear response function by the atom-bond electronegativity equalization method (ABEEM). Chem Phys Lett, 2000, 330: 132–138CrossRefGoogle Scholar
  121. 121.
    Yang ZZ, Wang CS. Molecular electronegativity in density functional theory (VIII) — Charge polarization modes in a closed system. Sci China Ser B, 2000, 43: 187–195CrossRefGoogle Scholar
  122. 122.
    Cong Y, Yang ZZ, Wang CS, Liu XC, Bao XH. Investigation of the regio- and stereoselectivity of Diels-Alder reactions by newly developed ABEEMσπ model on the basis of local HSAB principle and maximum hardness principle. Chem Phys Lett, 2002, 357: 59–64CrossRefGoogle Scholar
  123. 123.
    Yang ZZ, Wang CS. Atom-bond electronegativity equalization method and its applications based on density functional theory. J Chem Theory Comput, 2003, 2: 273–299CrossRefGoogle Scholar
  124. 124.
    Yang ZZ, Cui BQ. Atomic charge calculation of metallobiomolecules in terms of the ABEEM method. J Chem Theory Comput, 2007, 3: 1561–1568CrossRefGoogle Scholar
  125. 125.
    Xiao HY, Yang ZZ. Calculation of charge distribution in iron(II) complexes by using ABEEM model. Chem J Chin Univ, 2005, 26: 1886–1889Google Scholar
  126. 126.
    Cui BQ, Zhao DX, Yang ZZ. Prediction of reactive site in superoxide dismutase in terms of atom-bond electronegativity equalization method. Acta Chim Sinica, 2007, 65: 2687–2692Google Scholar
  127. 127.
    Cui BQ, Zhao DX, Gong LD. Investigation on the effect of small coordinated molecules on the activity of heme in terms of an ABEEM method. Acta Chim Sinica, 2008, 66: 1627–1631Google Scholar
  128. 128.
    Geerlings P, De Proft F. Langenaeker W. Conceptual density functional theory. Chem Rev, 2003, 103: 1793–1874CrossRefGoogle Scholar
  129. 129.
    Vařeková RS, Koča J. Optimized and parallelized implementation of the electronegativity equalization method and the atom-bond electronegativity equalization method. J Comput Chem, 2006, 27: 396–405CrossRefGoogle Scholar
  130. 130.
    Zhao DX, Liu C, Wang FF, Yu CY, Gong LD, Yang ZZ. Development of a polarizable force field using multiple fluctuating charges per atom. J Chem Theory Comput, 2010, 6: 795–804CrossRefGoogle Scholar
  131. 131.
    Yang ZZ, Wu Y, Zhao DX. Atom-bond electronegativity equalization method fused into molecular mechanics. I. A seven-site fluctuating charge and flexible body water potential function for water clusters. J Chem Phys, 2004, 120: 2541–2557CrossRefGoogle Scholar
  132. 132.
    Qian P, Yang ZZ. Application of the ABEEM/MM model in studying the properties of the water clusters (H2O)n (n = 7–10). Sci China Ser B, 2007, 50: 190–204CrossRefGoogle Scholar
  133. 133.
    Qian P, Lu LN, Song W, Yang ZZ. Study of water clusters in the n = 2–34 size regime, based on the ABEEM/MM model. Theor Chem Acc, 2009, 123: 487–500CrossRefGoogle Scholar
  134. 134.
    Qian P, Song W, Lu LN, Yang ZZ. Ab initio investigation of water clusters (H2O)n (n = 2–34). Int J Quantum Chem, 2010, 110: 1923–1937Google Scholar
  135. 135.
    Wu Y, Yang ZZ. Atom-bond electronegativity equalization method fused into molecular mechanics. II. A seven-site fluctuating charge and flexible body water potential function for liquid water. J Phys Chem A, 2004, 108: 7563–7576CrossRefGoogle Scholar
  136. 136.
    Li X, Yang ZZ. Hydration of Li+-ion in atom-bond electronegativity equalization method-7P water: A molecular dynamics simulation study. J Chem Phys, 2005, 122: 084514CrossRefGoogle Scholar
  137. 137.
    Li X, Yang ZZ. Study of lithium cation in water clusters: Based on atom-bond electronegativity equalization method fused into molecular mechanics. J Phys Chem A, 2005, 109: 4102–4111CrossRefGoogle Scholar
  138. 138.
    Yang, ZZ, Li X. Ion solvation in water from molecular dynamics simulation with the ABEEM/MM force field. J Phys Chem A, 2005, 109: 3517–3520CrossRefGoogle Scholar
  139. 139.
    Li X, Gong LD, Yang ZZ. Molecular dynamics simulations of liquid and ionic solvation of carbon tetrachloride: Based on atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM). Int J Chem Model, 2008, 1: 193–204Google Scholar
  140. 140.
    Yang, ZZ, Li X. Molecular-dynamics simulations of alkaline-earth metal cations in water by atom-bond electronegativity equalization method fused into molecular mechanics. J Chem Phys, 2005, 123: 094507CrossRefGoogle Scholar
  141. 141.
    Liu Y, Wang FF, Yu CY, Liu C, Gong LD, Yang ZZ. Structures and binding energies of Sr2+/Ba2+-water systems by ab initio and ABEEM/MM method. Acta Phys-Chim Sin, 2011, 27: 379–387Google Scholar
  142. 142.
    Li X, Yang ZZ. ABEEM/MM-based pair potential for molecular dynamics simulation of Fe2+(aq) and Fe3+(aq). J Theor Comput Chem, 2006, 5: 341–353CrossRefGoogle Scholar
  143. 143.
    Guan QM, Yang ZZ. Theoretical study on Co3+ in aqueous solution in terms of ABEEM/MM Model. Chin J Chem, 2007, 25: 727–735CrossRefGoogle Scholar
  144. 144.
    Guan QM, Han FY, Yang ZZ. Molecular dynamics studies on Fe2+, Co2+, and Ni2+ aqueous solutions based on ABEEM/MM fluctuating charge model. J Theor Comput Chem, 2008, 7: 1187–1201CrossRefGoogle Scholar
  145. 145.
    Lv Q, Liu C, Gong LD, Yang ZZ. Studies of the hydration structures of manganous(II) via the quantum chemistry and ABEEM/MM models. Chin Sci Bull, 2011, 56: 1530–1538CrossRefGoogle Scholar
  146. 146.
    Yang ZZ, Meng XF, Zhao DX, Gong LD. Theoretical study on hydronium ion clusters by ab initio calculation and ABEEM/MM model. Acta Chim Sinica, 2009, 67: 2074–2080Google Scholar
  147. 147.
    Zhao FY, Liu C, Gong LD, Yang ZZ. Theoretical studies on NH4 +(H2O)n (n = 1–9) in terms of quantum chemistry and ABEEM/MM. Acta Chim Sinica, 2011, 69: 1141–1150Google Scholar
  148. 148.
    Li X, Gong LD, Yang ZZ. Molecular dynamics simulations of LiCl association and NaCl association in water by means of ABEEM/MM. Sci China Ser B, 2008, 51: 1221–1230CrossRefGoogle Scholar
  149. 149.
    Wang FF, Zhao DX, Gong LD. Ab initio and ABEEM/MM fluctuating charge model studies of dimethyl phosphate anion in a microhydrated environment. Theor Chem Acc, 2009, 124: 139–150CrossRefGoogle Scholar
  150. 150.
    Yang ZZ, Zhang Q. Study of peptide conformation in terms of the ABEEM/MM method. J Comput Chem, 2006, 27: 1–10CrossRefGoogle Scholar
  151. 151.
    Zhang Q, Yang ZZ. An investigation of alkane conformations based on the ABEEM/MM model. Chem Phys Lett, 2005, 403: 242–247CrossRefGoogle Scholar
  152. 152.
    Yang ZZ, Qian P. A study of N-methylacetamide in water clusters: Based on atom-bond electronegativity equalization method fused into molecular mechanics. J Chem Phys, 2006, 125: 064311CrossRefGoogle Scholar
  153. 153.
    Guan QM, Yang ZZ. Study on complexes of trypsin and its inhibtors by means of atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM). J Theor Comput Chem, 2007, 6: 731–746CrossRefGoogle Scholar
  154. 154.
    Yang ZZ, Guan QM, Zhao DX. Molecular dynamics studies of crambin and BPTI in terms of ABEEM/MM method. J Theor Comput Chem, 2008, 7: 697–705CrossRefGoogle Scholar
  155. 155.
    Cui BQ, Gong LD, Zhao DX, Guan QM, Yang ZZ. Studies on the heme prosthetic group’s geometry by ABEEM/MM method. Chem J Chin Univ, 2008, 29: 585–590Google Scholar
  156. 156.
    Cui BQ, Gong LD, Zhao DX. Molecular dynamics simulation of microperoxidase in aqueous solution in terms of the ABEEM/MM method. Acta Phys-Chim Sin, 2008, 24: 1035–1040Google Scholar
  157. 157.
    Yang ZZ, Cui BQ. Dynamic simulations of the hydrogen-bondings on the proximal side of the heme in terms of ABEEM/MM method. Acta Phys-Chim Sin, 2007, 23: 1332–1336CrossRefGoogle Scholar
  158. 158.
    Guan QM, Cui BQ, Zhao DX, Gong LD, Yang ZZ. Molecular dynamics study on BPTI aqueous solution by ABEEM/MM fluctuating charge model. Chin Sci Bull, 2008, 53: 1171–1174CrossRefGoogle Scholar
  159. 159.
    Liu C, Yang ZZ. Reversible folding/unfolding of small α-helix in explicit solvent investigated by ABEEMσπ/MM. Sci China Ser B, 2009, 52: 1917–1924CrossRefGoogle Scholar
  160. 160.
    Qian P, Lu LL, Yang ZZ. A study of N-methylacetamide in water clusters: Based on atom-bond electronegativity equalization method fused into molecular mechanics. Can J Chem, 2009, 87: 1738–1746CrossRefGoogle Scholar
  161. 161.
    Wang FF, Gong LD, Zhao DX. Studies on the torsions of nucleic acids using ABEEMσπ/MM method. THEOCHEM, 2009, 909: 49–56CrossRefGoogle Scholar
  162. 162.
    Chen SL, Zhao DX, Gong LD, Yang ZZ. Theoretical studies on the hydration of formic acid by ab initio and ABEEMσπ fluctuating charge model. Theor Chem Acc, 2010, 127: 627–639CrossRefGoogle Scholar
  163. 163.
    Liu C, Zhao DX, Yang ZZ. Abeemsp fluctuating chargf force field applied to alanine dipeptide and alanine dipeptide-water systems. J Theor Comput Chem, 2010, 9: 77–97CrossRefGoogle Scholar
  164. 164.
    Yu L, Yang ZZ. Study on structures and properties of ammonia clusters (NH3)n (n = 1–5) and liquid ammonia in terms of ab initio method and atom-bond electronegativity equalization method ammonia-8P fluctuating charge potential model. J Chem Phys, 2010, 132: 174109CrossRefGoogle Scholar
  165. 165.
    Chen SL, Yang ZZ. Molecular dynamics simulations of a β-hairpin fragment of protein G by means of atom-bond electronegativity equalization method fused into molecular mechanics (ABEEMσπ/ MM). Chin J Chem, 2010, 28: 2109–2118CrossRefGoogle Scholar
  166. 166.
    Zhang WL, Chen SL, Yang ZZ. Calculation of complexes of the recombinant Kringle 1 domain of human plasminogen and its ligands by ABEEMsp/MM method. Chem J Chin Univ, 2010, 31: 1630–1635Google Scholar
  167. 167.
    Chen SL, Zhao DX, Yang ZZ. An estimation method of binding free energy in terms of ABEEMσπ/MM and continuum electrostatics fused into lie method. J Comput Chem, 2011, 32: 338–348CrossRefGoogle Scholar
  168. 168.
    Wang FF, Zhao DX, Yang ZZ. Studies of a mispaired DNA recognized by a rhodium intercalator based on the ABEEMσπ/MM method. Comput Theor Chem, 2011, 970: 36–41CrossRefGoogle Scholar
  169. 169.
    Huo HJ, Zhao DX, Yang ZZ. Interactions between bases and NMA by ab initio and ABEEMσπ methods. Chem J Chin Univ, 2011, 32: 2877–2884Google Scholar
  170. 170.
    Yu CY, Yang ZZ. Theoretical study of hydrogen peroxide interacting with DNA base and DNA base pair in terms of ab initio method and ABEEMσπ/MM fluctuating charge potential model. Comput Theor Chem, 2011, 967: 26–36CrossRefGoogle Scholar
  171. 171.
    Zhao DX, Yu L, Yang ZZ. Calculating solvation energies by means of a fluctuating charge model combined with continuum solvent model. J Chem Phys, 2011, 134: 194115CrossRefGoogle Scholar
  172. 172.
    Yu CY, Yang ZZ. A Systemic investigation of hydrogen peroxide clusters (H2O2)n (n = 1–6) and liquid-state hydrogen peroxide: Based on atom-bond electronegativity equalization method fused into molecular mechanics and molecular dynamics. J Phys Chem A, 2011, 115: 2615–2626CrossRefGoogle Scholar
  173. 173.
    Yu CY, Gong LD, Yang ZZ. Theoretical study on the hydration of hydrogen peroxide in terms of ab initio method and atom-bond electronegativity equalization method fused into molecular mechanics. Front Chem China, 2011, 6: 287–299CrossRefGoogle Scholar
  174. 174.
    Liu C, Zhao DX, Yang ZZ. Direct evaluation of individual hydrogen bond energy in situ in intra- and intermolecular multiple hydrogen bonds system. J Comput Chem, 2012, 33: 379–390CrossRefGoogle Scholar
  175. 175.
    Guo C, Liu C, Yang ZZ. Mobility of Na+ in a G-quadruplex. Acta Phys-Chim Sin, 2010, 26: 478–486Google Scholar
  176. 176.
    Wang HR, Liu C, Yang ZZ, Prediction of the exchanging route of K+ in guanine-quadruplex. Acta Chim Sinica, 2010, 68: 753–759Google Scholar
  177. 177.
    Yu CY, Yu Y, Gong LD, Yang ZZ. Mg2+/Ca2+ binding to DNA bases: A quantum chemical method and ABEEMσπ/MM fluctuating charge model study. Theor Chem Acc, 2012, 131: 1098CrossRefGoogle Scholar
  178. 178.
    Yague JI, Mohammed AM, Loeffler H, Rode BM. Classical and mixed quantum mechanical/molecular mechanical simulation of hydrated manganous ion. J Phys Chem A, 2001, 105: 7646–7650CrossRefGoogle Scholar
  179. 179.
    Loeffler HH, Yague JI, Rode BM. Many-body effects in combined quantum mechanical/molecular mechanical simulations of the hydrated manganous ion. J Phys Chem A, 2002, 106: 9529–9532CrossRefGoogle Scholar
  180. 180.
    Kuo IF, Tobias DJ. Electronic polarization and hydration of the dimethyl phosphate anion: An ab initio molecular dynamics study. J Phys Chem B, 2001, 105: 5827–5832CrossRefGoogle Scholar
  181. 181.
    Lide DR, ed. CRC Handbook of Chemistry and Physics, 90th Edition (CD-ROM Version 2010), Boca Raton: CRC Press/Taylor and Francis, 2009Google Scholar
  182. 182.
    Koneshan S, Rasaiah JC, Lynden-Bell RM, Lee SH. Solvent structure, dynamics, and ion mobility in aqueous solutions at 25 °C. J Phys Chem B, 1998. 102: 4193–4204CrossRefGoogle Scholar
  183. 183.
    Yamanaka K, Yamagami M, Takamuku T, Yamaguchi T, Wakita H. X-ray diffraction study on aqueous lithium chloride solution in the temperature range 138–373 K. J Phys Chem, 1993, 97: 10835–10839CrossRefGoogle Scholar
  184. 184.
    Schmid R, Miah AM, Sapunov VN. A new table of the thermo-dynamic quantities of ionic hydration: Values and some applications (enthalpy-entropy compensation and Born radii). PCCP, 2000, 2: 97–102CrossRefGoogle Scholar
  185. 185.
    Tissandier MD, Cowen KA, Feng WY, Gundlach E, Cohen MH, Earhart AD, Coe JV, Tuttle TR. The proton’s absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data. J Phys Chem A, 1998, 102: 7787–7794CrossRefGoogle Scholar
  186. 186.
    Bultinck, P, Vanholme R, Popelier PLA, De Proft F, Geerlings P. High-speed calculation of AIM charges through the electronegativity equalization method. J Phys Chem A, 2004, 108: 10359–10366CrossRefGoogle Scholar
  187. 187.
    Springer BA, Egeberg KD, Sligar SG, Rohlfs, RJ, Mathews AJ, Olson JS. Discrimination between oxygen and carbon monoxide and inhibition of autooxidation by myoglobin. Site-directed mutagenesis of the distal histidine. J Biol Chem, 1989, 264: 3057–3060Google Scholar
  188. 188.
    Menyhárd DK. Stereoelectronic control on the coordination of substrates to globin proteins. The role of proximal His93 on the NO release from myoglobin. J Am Chem Soc, 1998, 120: 7991–7992CrossRefGoogle Scholar
  189. 189.
    Zarić SD, Popović DM, Knapp EW. Factors determining the orientation of axially coordinated imidazoles in heme proteins. Biochemistry, 2001, 40: 7914–7928CrossRefGoogle Scholar
  190. 190.
    Wang Y, Patel DJ. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure, 1993, 1: 263–282CrossRefGoogle Scholar
  191. 191.
    Parkinson GN, Lee MPH, Neidle S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature, 2002, 417: 876–880CrossRefGoogle Scholar
  192. 192.
    Huppert JL. Four-stranded nucleic acids: Structure, function and targeting of G-quadruplexes. Chem Soc Rev, 2008, 37: 1375–1384CrossRefGoogle Scholar
  193. 193.
    Šket P, Plavec J. Tetramolecular DNA quadruplexes in solution: Insights into structural diversity and cation movement. J Am Chem Soc, 2010, 132: 12724–12732CrossRefGoogle Scholar
  194. 194.
    Heddi B, Phan AT, Structure of human telomeric DNA in crowded solution. J Am Chem Soc, 2011, 133: 9824–9833CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringLiaoning Normal UniversityDalianChina

Personalised recommendations