Science China Chemistry

, Volume 55, Issue 12, pp 2567–2572 | Cite as

pH Dependent plasmon-driven surface-catalysis reactions of p,p′-dimercaptoazobenzene produced from para-aminothiophenol and 4-nitrobenzenethiol



In this paper, we studied the pH dependent plasmon-driven surface-catalysis (PDSC) reactions of p,p′-dimercaptoazobenzene (DMAB) produced from para-aminothiophenol (PATP) and 4-nitrobenzenethiol (4NBT) both theoretically and experimentally. The surface enhanced Raman spectrum (SERS) of DMAB produced from PATP and 4NBT on Ag films in solutions with various pH values has been measured. The simulation and experimental results indicated that the pH dependence of PATP appeared in acidic environment and came from the amino group NH2. Furthermore, the ratio of intensity of Raman peak caused by PATP and DMAB indicated that this acidic sensor had higher pH sensitivity when it was excited by photons of higher energy.


plasmon-driven surface-catalysis pH senor SERS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Halas NJ, Lal S, Chang WS, Link S, Nordlander P. Plasmons in strongly coupled metallic nanostructures. Chem Rev, 2011, 111(6): 3913–3961CrossRefGoogle Scholar
  2. 2.
    Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc Chem Res, 2008, 41(12): 1842–1851CrossRefGoogle Scholar
  3. 3.
    Xu HX, Bjerneld EJ, Kall M, Borjesson L. Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering. Phys Rev Lett, 1999, 83(21): 4357–4360CrossRefGoogle Scholar
  4. 4.
    Zhang S, Wei H, Bao K, Hakanson U, Halas NJ, Nordlander P, Xu HX. Chiral surface plasmon polaritons on metallic nanowires. Phys Rev Lett, 2011, 107(9): 096801CrossRefGoogle Scholar
  5. 5.
    Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater, 2010, 9(10): 865–865CrossRefGoogle Scholar
  6. 6.
    Akimov AV, Mukherjee A, Yu CL, Chang DE, Zibrov AS, Hemmer PR, Park H, Lukin MD. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature, 2007, 450(7168): 402–406CrossRefGoogle Scholar
  7. 7.
    Faang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308(5721): 534–537CrossRefGoogle Scholar
  8. 8.
    Liu ZW, Lee H, Xiong Y, Sun C, Zhang X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 2007, 315(5819): 1686–1686CrossRefGoogle Scholar
  9. 9.
    Wei H, Wang Z, Tian X, Kall M, Xu H. Cascaded logic gates in nanophotonic plasmon networks. Nat Commun, 2011, 2: 387–391CrossRefGoogle Scholar
  10. 10.
    Fang YR, Li ZP, Huang YZ, Zhang SP, Nordlander P, Halas NJ, Xu HX. Branched silver nanowires as controllable plasmon routers. Nano Lett, 2010, 10(5): 1950–1954CrossRefGoogle Scholar
  11. 11.
    Ergin T, Stenger N, Brenner P, Pendry JB, Wegener M. Three-dimensional invisibility cloak at optical wavelengths. Science, 2010, 328(5976): 337–339CrossRefGoogle Scholar
  12. 12.
    Ozaki M, Kato J, Kawata S. Surface-plasmon holography with white-light illumination. Science, 2011, 332(6026): 218–220CrossRefGoogle Scholar
  13. 13.
    Sun MT, Xu HX. A novel application of plasmonics plasmon-driven surface-catalyzed reactions. Small, 2012, doi: 10.1002/smll. 201200572Google Scholar
  14. 14.
    Li HJ, Fu SL, Xie SX, Xu HQ, Zhou X, Wu JJ. Effects of the local environment on plasmonic coupling of metallic nanotube arrays. Sci China-Phys Mech Astron, 2011, 54(1): 106–110CrossRefGoogle Scholar
  15. 15.
    Zhang J, Jin YX, Wang HB, Ye C, Tong WM, Wang H. Growth and magnetic properties of single crystalline Ni nanowire arrays prepared by pulse DC electrodeposition. Sci China-Phys Mech Astron, 2011, 54(7): 1244–1248CrossRefGoogle Scholar
  16. 16.
    Yang LH, Wang YG, Yang BJ. Description of squeezed surface plasmons. Sci China-Phys Mech Astron, 2011, 54(9): 1583–1586CrossRefGoogle Scholar
  17. 17.
    Chen MJ, Zhou HQ, Qiu CY, Yang HC, Yu F, Sun LF. Studies on the properties of surface and edges of N-layer graphenes. Sci China-Phys Mech Astron, 2011, 54(10): 1729–1738CrossRefGoogle Scholar
  18. 18.
    Li M, Zeng QD, Wang C. Self-assembled supramolecular networks at interfaces: Molecular immobilization and recognition using nanoporous templates. Sci China-Phys Mech Astron, 2011, 54(10): 1739–1748CrossRefGoogle Scholar
  19. 19.
    Hu XN, Liu JB, Hou S, Wen T, Liu WQ, Zhang K, He WW, Ji YL, Ren HX, Wang Q, Wu XC. Research progress of nanoparticles as enzyme mimetics. Sci China-Phys Mech Astron, 2011, 54(10): 1749–1756CrossRefGoogle Scholar
  20. 20.
    He S, Liu DB, Wang Z, Cai KY, Jiang XY. Utilization of unmodified gold nanoparticles in colorimetric detection. Sci China-Phys Mech Astron, 2011, 54(10): 1757–1765CrossRefGoogle Scholar
  21. 21.
    Li XY, Tang Y, Ge GL. Preparation and ξ-potential characterization of highly dispersible phosphate—functionalized magnetite nanoparticles. Sci China-Phys Mech Astron, 2011, 54(10): 1766–1770CrossRefGoogle Scholar
  22. 22.
    Li HO, Huang W, Li SM, Tang CW, Lau KM. Metamorphic AlInAs/GaInAs HEMTs on silicon substrates by MOCVD. Sci China-Phys Mech Astron, 2011, 54(10): 1815–1818CrossRefGoogle Scholar
  23. 23.
    Wang X, Li XC, Zhang T, Hu CD, Zhu QX, Chen SH, Li Y, Xu J, He M, Niu QL, Zhao LZ, Li ST, Zhang Y. Novel sol-gel material for fabrication of a long period waveguide grating filter as a precise thermometer. Sci China-Phys Mech Astron, 2011, 54(11): 1967–1971CrossRefGoogle Scholar
  24. 24.
    Gao X, Zhang Y, Shang JX. First-principles calculation of the structure and the energy of ZrO2/Al2O3 nanomultilayer. Sci China-Phys Mech Astron, 2011, 54(11): 1990–1999CrossRefGoogle Scholar
  25. 25.
    Li YB, Shionhara R, Iwami K, Ohta Y, Umeda N. Observation of mitochondrial activity based on temporal and spatial pH variations measured by near-field fluorescent ratiometry. Sci China-Phys Mech Astron, 2011, 54(12): 2225–2229CrossRefGoogle Scholar
  26. 26.
    Sun MT, Zhang ZL, Zheng HR, Xu HX. In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy. Sci Rep, 2012, doi: SREP-12-01829AGoogle Scholar
  27. 27.
    Zhu QX, Hu CD, Wang WJ, He MA, Zhou J, Zhao LZ, Peng ZX, Li ST, Zhu N, Zhang Y. Surface plasmon interference pattern on the surface of a silver-clad planar waveguide as a sub-micron lithography tool. Sci China-Phys Mech Astron, 2011, 54(2): 240–244CrossRefGoogle Scholar
  28. 28.
    Li HJ, Fu SL, Xie SX, Xu HQ, Zhou X, W JJ. Induced electric fields and plasmonic interactions between a metallic nanotube and a thin metallic film. Sci China-Phys Mech Astron, 2010, 53(1): 38–43CrossRefGoogle Scholar
  29. 29.
    Xie SX, Li HJ, Xu HQ, Zhou X, Fu SL, Wu JJ. The effect of the Kerr nonlinearity on the transmission through the nanoslit gold film. Sci China-Phys Mech Astron, 2010, 53(3): 474–480CrossRefGoogle Scholar
  30. 30.
    Li Y, Li YZ, Dong B, Yang ZL. Direct visualization of the charge transfer in conjugated polymers. Sci China-Phys Mech Astron, 2011, 54(6): 1119–1123CrossRefGoogle Scholar
  31. 31.
    Feng ZQ, Bai L, Cao BS, Gong LD, Dong B. Er3+-Yb3+ codoped borosilicate glass for optical thermometry. Sci China-Phys Mech Astron, 2010, 53(5): 848–851CrossRefGoogle Scholar
  32. 32.
    Iwakura L, Yabushita A, Kobayashi Ti. Solvent effect for ruthenium porphyrin. Sci China-Phys Mech Astron, 2010, 53(6): 1005–1012CrossRefGoogle Scholar
  33. 33.
    Chen AQ, Shao QY, Wang L, Deng F. Electronic structure and optical property of boron doped semiconducting graphene nanoribbons. Sci China-Phys Mech Astron, 2011, 54(8): 1438–1442CrossRefGoogle Scholar
  34. 34.
    Lu S, Yao ZH, Hao PF, Fu CS. Drag reduction in ultrahydrophobic channels with micro-nano structured surfaces. Sci China-Phys Mech Astron, 2010, 53(7): 1298–1305CrossRefGoogle Scholar
  35. 35.
    Hou YX, Geng XM, Li YZ, Dong B, Sun MT. Electrical and Raman properties of p-type and n-type modified graphene by inorganic quantum dot and organic molecule modification. Sci China-Phys Mech Astron, 2011, 54(3): 416–419CrossRefGoogle Scholar
  36. 36.
    Fang YR, Li YZ, Xu HX, Sun MT. Ascertaining p,p′- dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles. Langmuir, 2010, 26(11): 7737–7746CrossRefGoogle Scholar
  37. 37.
    Dong B, Fang YR, Xia LX, Xu HX, Sun MT. Is 4-nitrobenzenethiol converted to p,p′-dimercaptoazobenzene or 4-aminothiophenol by surface photochemistry reaction? J Raman Spectrosc, 2011, 42(6): 1205–1206CrossRefGoogle Scholar
  38. 38.
    Huang YF, Zhu HP, Liu GK, Wu DY, Ren B, Tian ZQ. When the signal is not from the original molecule to be detected: Chemical transformation of para-aminothiophenol on ag during the sers measurement. J Am Chem Soc, 2010, 132(27): 9244–9246CrossRefGoogle Scholar
  39. 39.
    Tian XR, Chen L, Xu HX, Sun MT. Ascertaining genuine sers spectra of p-aminothiophenol. RSC Advances, 2012, doi: 10.1039/c0xx00000xGoogle Scholar
  40. 40.
    Gabudean AM, Biro D, Astilean S. Localized surface plasmon resonance (lspr) and surface-enhanced raman scattering (sers) studies of 4-aminothiophenol adsorption on gold nanorods. J Mol Struct, 2011, 993(1–3): 420–424CrossRefGoogle Scholar
  41. 41.
    Sun MT, Hou YX, Li ZP, Liu LW, Xu HX. Remote excitation polarization-dependent surface photochemical reaction by plasmonic waveguide. Plasmonics, 2011, 6(4): 681–687CrossRefGoogle Scholar
  42. 42.
    Sun MT, Hou YX, Xu HX. Can information of chemical reaction propagate with plasmonic waveguide and be detected at remote terminal of nanowire? Nanoscale, 2011, 3(10): 4114–4116CrossRefGoogle Scholar
  43. 43.
    Dong B, Huang YZ, Yu NS, Fang YR, Cao BS, Li YZ, Xu HX, Sun MT. Local and remote charge-transfer-enhanced raman scattering on one-dimensional transition-metal oxides. Chem-Asian J, 2010, 5(8): 1824–1829CrossRefGoogle Scholar
  44. 44.
    Huang YZ, Fang YR, Sun MT. Remote excitation of surface-enhanced raman scattering on single au nanowire with quasi-spherical termini. J Phys Chem C, 2011, 115(9): 3558–3561CrossRefGoogle Scholar
  45. 45.
    Song P, Li Y, Li Y, Zhao M, Liu L, Sun MT. Remote-excitation time-dependent surface catalysis reaction using plasmonic waveguide on sites of single-crystalline crossed nanowires. Plasmonics, 2012, doi: 10.1007/s11468-012-9382-0Google Scholar
  46. 46.
    Dong B, Fang Y, Chen X, Xu H, Sun M. Substrate-, wavelength-, and time-dependent plasmon-assisted surface catalysis reaction of 4-nitrobenzenethiol dimerizing to p,p′-dimercaptoazobenzene on au, ag, and cu films. Langmuir, 2011, 27(17): 10677–10682CrossRefGoogle Scholar
  47. 47.
    Huang YZ, Fang YR, Yang ZL, Sun MT. Can p,p′- Dimercaptoazobisbenzene be produced from p-aminothiophenol by surface photochemistry reaction in the junctions of a Ag nanoparticle- molecule-ag (or Au) film? J Phys Chem C, 2010, 114(42): 18263–18269CrossRefGoogle Scholar
  48. 48.
    Sun MT, Huang YZ, Xia LX, Chen XW, Xu HX. The pH-controlled plasmon-assisted surface photocatalysis reaction of 4-aminothiophenol to p,p′-dimercaptoazobenzene on Au, Ag, and Cu colloids. J Phys Chem C, 2011, 115(19): 9629–9636CrossRefGoogle Scholar
  49. 49.
    Kim K, Kim KL, Shin D, Choi JY, Shin KS. Surface-enhanced raman scattering of 4-aminobenzenethiol on Ag and Au: pH dependence of b(2)-type bands. J Phys Chem C, 2012, 116(7): 4774–4779CrossRefGoogle Scholar
  50. 50.
    Zong SF, Wang ZY, Yang J, Cui YP. Intracellular ph sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity. Anal Chem, 2011, 83(11): 4178–4183CrossRefGoogle Scholar
  51. 51.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JrJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT, 2009Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Applied PhysicsChongqing UniversityChongqingChina
  2. 2.School of Physics and Materials EngineeringDalian Nationalities UniversityDalianChina

Personalised recommendations