Skip to main content
Log in

Preparation and evaluation of Fe3O4-core@Ag-shell nanoeggs for the development of fingerprints

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The surface of individual, relatively dispersed Fe3O4 nanospheres is coated with a thiol-terminated silane, then the thiol on the Fe3O4 particles’ surfaces treats with nano-Ag colloidal solution to form Ag-modified Fe3O4 nanoparticles. Eventually, a solid shell of Ag is capped onto the Ag-modified Fe3O4 nanoparticles by reducing aliquots of AgNO3 solution using NaBH4 as a reducing agent. The as-prepared Fe3O4-core@Ag-shell nanoeggs, which are uniform in size, highly monodisperse, stable against aggregation and have high magnetization, were depended on thin shell of the attached nano-Ag, the size of Fe3O4 nanoparticles, the volume of thiol-terminated silane as well as the ultrasonication. The Fe3O4-core@Ag-shell nanoeggs are proposed to detect fingermarks on different surface, with which the fingermarks can be viewed directly, due to the clear ridge detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park J, Lee E, Hwang NM, Kang M, Kim SC, Hwang Y,. Park JG, Noh HJ, Kim JY, Park JH, Hyeon T. One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew Chem, 2005, 117: 2932–2937

    Article  Google Scholar 

  2. Desvaux C, Amiens C, Fejes P, Renaud P, Respaud M, Lecante P, Snoeck E, Chaudret B. Multimilimeter-large superlattice of air-stable iron-cobalt nanoparticles. Nat Mater, 2005, 4: 750–753

    Article  CAS  Google Scholar 

  3. Goon IY, Lai Leo MH, Lim M, Munroe P, Gooding JJ, Amal R. Fabrication and dispersion of gold-shell-protected magnetite nanoparticles: Systematic control using polyethyleneimine. Chem Mater, 2009, 21: 673–681

    Article  CAS  Google Scholar 

  4. Zhang LY, Yuan R, Chai YQ, Li XL. Investigation of the electrochemical and electrocatalytic behavior of positively charged gold nanoparticle andl-cysteine film on an Au electrode. Anal Chim Acta, 2007, 596: 99–105

    Article  CAS  Google Scholar 

  5. Wang DS, He JB, Rosenzweig N, Rosenzweig Z. Superparamagnetic Fe2O3 beads-Cd Se/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Lett, 2004, 4: 409–413

    Article  CAS  Google Scholar 

  6. Wu W, He QG, Chen H, Tang JX, Nie LB. Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles. Nanotechnology, 2007, 18: 1–8

    Google Scholar 

  7. Zhang LY, Liu Y, Chen T. A mediatorless and label-free amperometric immunosensor for detection of h-IgG. Int J Biol Macromol, 2008, 43: 165–169

    Article  CAS  Google Scholar 

  8. Yu H, Chen M, Rice PM, Wang, SX, White RL, Sun SH. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett, 2005, 5: 379–382

    Article  CAS  Google Scholar 

  9. Cho SJ, Idrobo JC, Olamit J, Liu K, Browning ND, Kauzlarich SM. Growth mechanisms and oxidation resistance of gold-coated iron nanoparticles. Chem Mater, 2005, 17: 3181–3186

    Article  CAS  Google Scholar 

  10. Grigoriev D, Gorin D, Sukhorukov GB, Yashchenok A, Maltseva E, Möhwald. Polyelectrolyte/magnetite nanoparticle multilayers: Preparation and structure characterization. Langmuir, 2007, 23: 12388–12396

    Article  CAS  Google Scholar 

  11. Xu CJ, Xie JX, Ho D, Wang C, Kohler N, Walsh EG, Morgan JR, Chin YE, Sun SH. Au-Fe3O4 Dumbbell nanoparticles as dual-functional probes. Angew Chem Int Ed, 2008, 47: 173–176

    Article  CAS  Google Scholar 

  12. Stoeva SI, Huo FW, Lee JS, Mirkin CA. Three-layer composite magnetic nanoparticle probes for DNA. J Am Chem Soc, 2005, 127: 15362–15363

    Article  CAS  Google Scholar 

  13. Luo B, Song XJ, Zhang F, Xia A, Yang WL, Hu JH, Wang CC. Multifunctional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters. Langmuir, 2010, 26: 1674–1679

    Article  CAS  Google Scholar 

  14. Caruntu D, Cushing BL, Caruntu G, O’Connor CJ. Attachment of gold nanograins onto colloidal magnetite nanocrystals. Chem Mater, 2005, 17: 3398–3402

    Article  CAS  Google Scholar 

  15. Lee PC, Meisel D. Adsorption and surface-enhanced raman of dyes on silver and gold sols. J Phys Chem, 1982, 86: 3391–3395

    Article  CAS  Google Scholar 

  16. Lyon JL, Fleming DA, Stone MB, Schiffer P, Williams ME. Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett, 2004, 4: 719–723

    Article  CAS  Google Scholar 

  17. Park SE, Lee JW, Haam SJ, Lee SW. Fabrication of double-dop magnetic silica nanospheres and deposition of thin gold layer. Bull Korean Chem Soc, 2009, 30: 869–872

    Article  CAS  Google Scholar 

  18. Lu Y, Yin Y, Mayers B T, Xia Y. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett, 2002, 2: 183–186

    Article  CAS  Google Scholar 

  19. Li TF, Deng YJ, Shong XP, Jin ZX, Zhang Y. The formation of magnetite nanoparticles in ordered system of the soybean lecithin. Bull Korean Chem Soc, 2003, 24: 957–960

    Article  CAS  Google Scholar 

  20. Jing SY, Xing SX, Yu LX, Wu Y, Zhao C. Synthesis and characterization of Ag/polyaniline core-shell nanocomposites based on silver nanoparticles colloid. Mater Lett, 2007, 61: 2794–2797

    Article  CAS  Google Scholar 

  21. Kim K, Choi JY, Lee HB, Shin KS. Silanization of Ag-deposited magnetite particles: an efficient route to fabricate magnetic nanoparticle-based raman barcode materials. Appl Mater Interfaces, 2010, 2: 1872–1878

    Article  CAS  Google Scholar 

  22. Allman DS, Maggs SJ, Pounds CA. The use of colloidal gold/multimetal deposition for the detection of latent prints—a preliminary evaluation. Forensic Science Service Report, 1992, 747: 1–24

    Google Scholar 

  23. Baschong W, Stierhof Y. Preparation, use and enlargement of ultrasmall gold particles in immunoelectron microscopy. Microscopy Res Tech, 1998, 42: 66–79

    Article  CAS  Google Scholar 

  24. Sodhi GS, Kaur J. Powder method for detecting latent fingerprints: a review. Forensic Sci Int, 2001, 120: 172–176

    Article  CAS  Google Scholar 

  25. Choi MJ, Smoother T, Martin A, McDonagh AM. Fluorescent TiO2 powders prepared using a new perylene diimide dye: Applications in latent fingermark detection. Forensic Sci Int, 2007, 173: 154–160

    Article  CAS  Google Scholar 

  26. Thonglon T, Sc B, Chaikum N. Magnetic fingerprint powder from a mineral indigenous to Thailand. J Forensic Sci, 2010, 55: 1343–1346

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LingYan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Zhou, X. & Chu, T. Preparation and evaluation of Fe3O4-core@Ag-shell nanoeggs for the development of fingerprints. Sci. China Chem. 56, 551–556 (2013). https://doi.org/10.1007/s11426-012-4764-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4764-x

Keywords

Navigation