Skip to main content
Log in

Improved biocompatibility of phosphorylcholine end-capped poly(butylene succinate)

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this work, the biocompatibility of a biomimetic, fully biodegradable ionomer phosphorylcholine (PC)-functionalized poly(butylene succinate) (PBS-PC) was investigated by means of hemolysis, platelet adhesion, protein adsorption and cytotoxicity experiments. The reference materials were poly(butylene succinate) (PBS) and chloroethylphosphoryl functionalized poly(butylene succinate) (PBS-Cl). The hemolysis rates (HR) of the leaching solutions of PBS, PBS-Cl and PBS-PC were all lower than the safe value, and the rate of PBS-PC was reduced to 1.07%. Scanning electron microscopy (SEM) measurements showed that platelet adhesion and aggregation were significant on both PBS and PBS-Cl surface. In contrast, very few platelets were observed on PBS-PC surface. Bicinchoninic acid (BCA) measurements revealed that the adsorption amounts of bovine serum albumin (BSA) and bovine plasma fibrinogen (BPF) on PBS-PC surface were 52% and 72% reduction respectively compared with those on PBS surface. Moreover, non-cytotoxicity of both PBS-PC particles and its leaching solution was suggested by MTT assay using mouse L929 fibroblast cells. All the results demonstrated that the biocompatibility of PBS could be greatly improved by PC end-capping strategy. This PC functionalized polyester may have potential applications in biological environments as a novel carrier for controlled drug release and scaffold for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang HY, Ji JH, Zhang W, Zhang YH, Jiang J, Wu ZW, Pu SH, Chu PK. Biocompatibility and bioactivity of plasma-treated biodegradable poly(butylene succinate). Acta Biomater, 2009, 5: 279–287

    Article  CAS  Google Scholar 

  2. Jagur-Grodzinski J. Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies. Polym Adv Technol, 2006, 17: 395–418

    Article  CAS  Google Scholar 

  3. Wong HM, Yeung KWK, Lam KO, Tama V, Chu PK, Luk KDK, Cheung KMC. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials, 2010, 31: 2084–2096

    Article  CAS  Google Scholar 

  4. Qu X, Cui WJ, Yang F, Min CC, Shen H, Bei JZ, Wang SG. The effect of oxygen plasma pretreatment and incubation in modified simulated body fluids on the formation of bone-like apatite on poly(lactide-co-glycolide) (70/30). Biomaterials, 2006, 28: 9–18

    Article  Google Scholar 

  5. Amato I, Ciapetti G, Pagani S, Marlett G, Satriano C, Baldin N, Granchi D. Expression of cell adhesion receptors in human osteoblasts cultured on biofunctionalized poly-(ɛ-caprolactone) surfaces. Biomaterials, 2007, 28: 3668–3678

    Article  CAS  Google Scholar 

  6. Yang J, Tian WS, Li QB, Li Y, Cao AM. Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s bearing functionalizable carbonate building blocks: ii. Enzymatic biodegradation and in vitro biocompatibility assay. Biomacromolecules, 2004, 5: 2258–2268

    Article  CAS  Google Scholar 

  7. Ba CY, Yang J, Hao QH, Liu XY, Cao AM. Syntheses and physical characterization of new aliphatic triblock poly(L-lactide-b-butylene succinate-b-L-lactide)s bearing soft and hard biodegradable building blocks. Biomacromolecules, 2003, 4: 1827–1834

    Article  CAS  Google Scholar 

  8. Shih YF, Chen LS, Jeng RJ. Preparation and properties of biodegradable PBS/multi-walled carbon nanotube nanocomposites. Polymer, 2008, 49: 4602–4611

    Article  CAS  Google Scholar 

  9. Shirahama H, Kawaguchi Y, Aludin MS, Yasuda H. Synthesis and enzymatic degradation of high molecular weight aliphatic polyesters. J Appl Polym Sci, 2001, 80: 340–347

    Article  CAS  Google Scholar 

  10. Ishii M, Okazaki M, Shibasaki Y, Ueda M, Teranishi T. Convenient synthesis of aliphatic polyesters by distannoxane-catalyzed polycondensation. Biomacromolecules, 2001, 2: 1267–1270

    Article  CAS  Google Scholar 

  11. Yang J, Hao QH, Liu XY, Ba CY, Cao AM. Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s with functionalizable carbonate building blocks. 1. Chemical synthesis and their structural and physical characterization. Biomacromolecules, 2004, 5: 209–218

    Article  CAS  Google Scholar 

  12. Zhang SP, Zhu XX, Gong YK. Synthesis, characterization and properties of phosphorylcholine functionalized poly(butylene succinate). Acta Chim Sinica, 2009, 67: 1903–1909

    CAS  Google Scholar 

  13. Zhang SP, Wang D, Dang Y, Shi SQ, Gong YK. Enzymatic biodegradation and thermal properties of phosphorylcholine functionalized poly(butylene succinate). Chem J Chinese U, 2012, 33: 416–420

    CAS  Google Scholar 

  14. Kadoma Y, Nakabayashi N, Masuhara E, Yamauchi J. Synthesis and hemolysis of the polymer containing phosphorylcholine. Kobunshi Ronbunshu, 1978, 35: 423–427

    Article  CAS  Google Scholar 

  15. Ishihara K, Fukumoto K, Iwasaki Y, Nakabayashi N. Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 1. Surface characterization. Biomaterials, 1999, 20: 1545–1551

    Article  CAS  Google Scholar 

  16. Watanabe J, Nederberg F, Atthoff B, Bowden T, Hilborn J, Ishihara K. Cytocompatible biointerface on poly(lactic acid) by enrichment with phosphorylcholine groups for cell engineering. Mater Sci Eng C, 2007, 27: 227–231

    Article  CAS  Google Scholar 

  17. Yang S, Zhang SP, Winnik FM, Mwale F, Gong YK. Group reorientation and migration of amphiphilic polymer bearing phosphorylcholine functionalities on surface of cellular membrane mimicking coating. J Biomed Mater Res A, 2008, 84: 837–841

    Google Scholar 

  18. Gong M, Yang S, Ma JN, Zhang SP, Winnik FM, Gong YK. Tunable cell membrane mimetic surfaces prepared with a novel phospholipid polymer. Appl Surf Sci, 2008, 255: 555–558

    Article  CAS  Google Scholar 

  19. Iwasaki Y, Ishihara K. Phosphorylcholine-containing polymers for biomedical applications. Anal Bioanal Chem, 2005, 381: 534–546

    Article  CAS  Google Scholar 

  20. Bi HY, Zhong W, Meng S, Kong JL, Yang PY, Liu BH. Construction of a biomimetic surface on microfluidic chips for biofouling resistance. Anal Chem, 2006, 78: 3399–3405

    Article  CAS  Google Scholar 

  21. Futamura K, Matsuno R, Konno T, Takai M, Ishihara K. Rapid development of hydrophilicity and protein adsorption resistance by polymer surfaces bearing phosphorylcholine and naphthalene groups. Langmuir, 2008, 24: 10340–10344

    Article  CAS  Google Scholar 

  22. Reisch A, Hemmerle J, Voegel JC, Gonthier E, Decher G, Benkirane-Jessel N, Chassepot A, Mertz D, Lavalle P, Mesini P, Schaaf P. Polyelectrolyte multilayer coatings that resist protein adsorption at rest and under stretching. J Mater Chem, 2008, 18: 4242–4245

    Article  CAS  Google Scholar 

  23. Ishihara K, Ando B, Takai M. Phosphorylcholine group-immobilized surface prepared on polydimethylsiloxane membrane by in situ reaction for its reduced biofouling. NanoBiotechnology, 2007, 3: 83–88

    Article  CAS  Google Scholar 

  24. Sibarani J, Takai M, Ishihara K. Surface modification on microfluidic devices with 2-methacryloyloxyethyl phosphorylcholine polymers for reducing unfavorable protein adsorption. Colloids Surf B, 2007, 54: 88–93

    Article  CAS  Google Scholar 

  25. Nederberg F, Bowden T, Nilsson B, Hong J, Hilborn J. Phosphoryl choline introduces dual activity in biomimetic ionomers. J Am Chem Soc, 2004, 126: 15350–15351

    Article  CAS  Google Scholar 

  26. Luo J, Wang LJ, Luo XL. Progress in phospholipid polymers. Polymer materials science and engineering. Polym Mater Sci Eng, 2006, 22: 25–29

    CAS  Google Scholar 

  27. Nederberg F, Bowden T, Hilborn J. Synthesis, characterization, and properties of phosphoryl choline functionalized poly ɛ-caprolactone and charged phospholipid analogues. Macromolecules, 2004, 37: 954–965

    Article  CAS  Google Scholar 

  28. Meng S, Zhong W, Chou LL, Wang QH, Liu ZJ, Du QG. Phosphorylcholine end-capped poly-ɛ-caprolactone: A novel biodegradable material with improved antiadsorption property. J Appl Polym Sci, 2007, 103: 989–997

    Article  CAS  Google Scholar 

  29. Coutinho DF, Pashkuleva IH, Alves CM, Marques AP, Neves NM, Reis RL. The effect of chitosan on the in vitro biological performance of chitosan-poly(butylene succinate) blends. Biomacromolecules, 2008, 9: 1139–1145

    Article  CAS  Google Scholar 

  30. Robinson BI, Fletcher JP. Fluoropolymer coated dacron or polytetrafluoroethylene for femoropopliteal bypass grafting: A multicentre trial. ANZ J Surg, 2003, 73: 95–99

    Article  Google Scholar 

  31. Motlagh D, Yang J, Lui KY, Webb AR, Ameer GA. Hemocompatibility evaluation of poly(glycerol-sebacate) in vitro for vascular tissue engineering. Biomaterials, 2006, 27: 4315–4324

    Article  CAS  Google Scholar 

  32. Ishihara K, Iwasaki Y, Nakabayashi N. Novel biomedical polymers for regulating serious biological reactions. Mater Sci Eng C, 1998, 6: 253–259

    Article  Google Scholar 

  33. Kallinteri P, Higgins S, Hutcheon GA, St Pourcain CB, Garnett MC. Novel functionalized biodegradable polymers for nanoparticle drug delivery systems. Biomacromolecules, 2005, 6: 1885–1894

    Article  CAS  Google Scholar 

  34. Wang WS, Guo YL, Otaigbe JU. Synthesis and characterization of novel biodegradable and biocompatible poly(ester-urethane) thin films prepared by homogeneous solution polymerization. Polymer, 2008, 49: 4393–4398

    Article  CAS  Google Scholar 

  35. Zhang SX, Li JA, Song Y, Zhao CL, Zhang XN, Xie CY, Zhang Y, Tao HR, He YH, Jiang Y, Bian YJ. In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg-Zn alloy. Mater Sci Eng C, 2009, 29: 1907–1912

    Article  CAS  Google Scholar 

  36. Gou ML, Zheng L, Peng XY, Men K, Zheng XL, Zeng S, Guo G, Luo F, Zhao X, Chen LJ, Wei YQ, Qian ZY. Poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) (PCL-PEG-PCL) nanoparticles for honokiol delivery in vitro. Int J Pharm, 2009, 375: 170–176

    Article  CAS  Google Scholar 

  37. Yabusaki K, Kokufuta E. Aggregation mechanism of blood platelets studied by the time-resolved light scattering method. Langmuir, 2002, 18: 39–41

    Article  CAS  Google Scholar 

  38. Chen YM, Tanaka M, Gong JP, Yasuda K, Yamamoto S, Shimomura M, Osada Y. Platelet adhesion to human umbilical vein endothelial cells cultured on anionic hydrogel scaffolds. Biomaterials, 2007, 28: 1752–1760

    Article  CAS  Google Scholar 

  39. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujmoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem, 1985, 150: 76–85

    Article  CAS  Google Scholar 

  40. Huangfu PB, Gong M, Zhang CF, Yang S, Zhao J, Gong YK. Cell outer membrane mimetic modification of a cross-linked chitosan surface to improve its hemocompatibility. Colloids Surf B, 2009, 71: 268–274

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongKuan Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Wang, L., Yang, S. et al. Improved biocompatibility of phosphorylcholine end-capped poly(butylene succinate). Sci. China Chem. 56, 174–180 (2013). https://doi.org/10.1007/s11426-012-4759-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4759-7

Keywords

Navigation