Skip to main content
Log in

Exponentially increased nucleation ability for poly(L-lactide) by adding acid-oxidized multiwalled carbon nanotubes with reduced aspect ratios

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Acid-oxidized multiwalled carbon nanotubes (A-MWCNTs) with a range of reduced aspect ratios (from about 11 to 5.8) were obtained by acid oxidization of MWCNTs in the mixture of HNO3 and H2SO4 for varying periods of 1, 3, 8 and 12 h, respectively. The aspect ratios and surface functionalization of A-MWCNTs were well characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and thermogravimetric analysis (TGA). Poly(L-lactide)/A-MWCNT composites containing 0.5 wt% A-MWCNTs with a range of reduced aspect ratios were prepared by solution cast. The effects of added A-MWCNTs on the isothermal crystallization kinetics of poly(L-lactide)/A-MWCNT composites were investigated by means of differential scanning calorimetry (DSC), rheology and polarized optical microscopy (POM). It is surprising to find that not only the addition of A-MWCNTs effectively increases the poly(L-lactide) (PLA) crystallization kinetics, but also the nucleation ability of A-MWCNTs for PLA crystallization exponentially increases with the reduced aspect ratio, that is to say, those with lower aspect ratios show much stronger nucleation ability for PLA crystallization than those with higher aspect ratios. The exponentially increased nucleation ability of A-MWCNTs with a range of reduced aspect ratios for PLA crystallization is disclosed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun, 2000, 21: 117–132

    Article  CAS  Google Scholar 

  2. Drumright RE, Gruber PR, Henton DE. Polylactic acid technology. Adv Mater, 2000, 12: 1841–1846

    Article  CAS  Google Scholar 

  3. Bogaert JC, Coszach P. Poly(lactic acids): A potential solution to plastic waste dilemma. Macromol Symp, 2000, 153: 287–303

    Article  CAS  Google Scholar 

  4. Garlotta D. A Literature Review of Poly(lactic acid). J Polym Environ, 2001, 9: 63–84

    Article  CAS  Google Scholar 

  5. Iannace S, Nicolais L. Isothermal crystallization and chain mobility of poly(L-lactide). Polymer, 1997, 38: 4003–4009

    Article  Google Scholar 

  6. Di Lorenzo ML. Crystallization behavior of poly(L-lactic acid). Eur Polym J, 2005, 41: 569–575

    Article  Google Scholar 

  7. Fukuda N, Tsuji H. Physical properties and enzymatic hydrolysis of poly(L-lactide)-TiO2 composites. J Appl Polym Sci, 2005, 96: 190–199

    Article  CAS  Google Scholar 

  8. Chang JH, An YU, Sur GS. Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability. J Polym Sci Polym Phys, 2003, 41: 94–103

    Article  CAS  Google Scholar 

  9. Lu JM, Qiu ZB, Yang WT. Fully biodegradable blends of poly(L-lactide) and poly(ethylene succinate): Miscibility, crystallization, and mechanical properties. Polymer, 2007, 48: 4196–4204

    Article  CAS  Google Scholar 

  10. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56–58

    Article  CAS  Google Scholar 

  11. Lu KB, Grossiord N, Koning CE, Miltner HE, van Mele B, Loos J. Carbon nanotube/isotactic polypropylene composites prepared by latex technology: Morphology analysis of CNT-induced nucleation. Macromolecules, 2008, 41: 8081–8085

    Article  CAS  Google Scholar 

  12. Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C. Individual single-wall carbon nanotubes as quantum wires. Nature, 1997, 386: 474–477

    Article  CAS  Google Scholar 

  13. Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature, 1996, 381: 678–680

    Article  CAS  Google Scholar 

  14. Wong EW, Sheehan PE, Lieber CM. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997, 277: 1971–1975

    Article  CAS  Google Scholar 

  15. Thostenson ET, Ren ZF, Chou TW. Advances in the science and technology of carbon nanotubes and their composites: A review. Comp Sci Tech, 2001, 61: 1899–1912

    Article  CAS  Google Scholar 

  16. Coleman JN, Khan U, Gun’ko YK. Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater, 2006, 18: 689–706

    Article  CAS  Google Scholar 

  17. Coleman JN, Khan U, Blau WJ, Gun’ko YK. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon, 2006, 44: 1624–1652

    Article  CAS  Google Scholar 

  18. Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer, 2006, 47: 2036–2045

    Article  CAS  Google Scholar 

  19. Haggenmueller R, Guthy C, Lukes JR, Fischer JE, Winey KI. Single wall carbon nanotube/polyethylene nanocomposites: Thermal and electrical conductivity. Macromolecules, 2007, 40: 2417–2421

    Article  CAS  Google Scholar 

  20. Xu DH, Wang ZG, Douglas JF. Influence of carbon nanotube aspect ratio on normat stress differences in isotactic polypropylene nanocomposite melts. Macromolecules, 2008, 41: 815–825

    Article  CAS  Google Scholar 

  21. Xu DH, Wang ZG. Role of multi-wall carbon nanotube network in composites to crystallization of isotactic polypropylene matrix. Polymer, 2008, 49: 330–338

    Article  CAS  Google Scholar 

  22. Chen JH, Yao BX, Su WB, Yang YB. Isothermal crystallization behavior of isotactic polypropylene blended with small loading of polyhedral oligomeric silsesquioxane. Polymer, 2007, 48: 1756–1769

    Article  CAS  Google Scholar 

  23. Anand KA, Agarwal US, Joseph R. Carbon nanotubes induced crystallization of poly(ethylene terephthalate). Polymer, 2006, 47: 3976–3980

    Article  Google Scholar 

  24. Li CY, Li LY, Cai WW, Kodjie SL, Tenneti KK. Nanohybrid shish-kebabs: Periodically functionalized carbon nanotubes. Adv Mater, 2005, 17: 1198–1202

    Article  CAS  Google Scholar 

  25. Li L, Li CY, Ni C. Polymer crystallization-driven, periodic patterning on carbon nanotubes. J Am Chem Soc, 2006, 128: 1692–1699

    Article  CAS  Google Scholar 

  26. Urayama H, Kanamori T, Kimura Y. Microstructure and thermomechanical properties of glassy polylactides with different optical purity of the lactate units. Macromol Mater Eng, 2001, 286: 705–713

    Article  CAS  Google Scholar 

  27. Li YL, Wang Y, Liu L, Han L, Xiang FM, Zhou ZW. Crystallization improvement of poly(L-lactide) induced by functionalized multiwalled carbon nanotubes. J Polym Sci Polym Phys, 2009, 47: 326–339

    Article  CAS  Google Scholar 

  28. Xu HS, Dai XJ, Lamb PR, Li ZM. Poly(L-lactide) crystallization induced by multiwall carbon nanotubes at very low loading. J Polym Sci Polym Phys, 2009, 47: 2341–2352

    Article  CAS  Google Scholar 

  29. Hu X, An H, Li ZM, Geng Y, Li L, Yang C. Origin of carbon nanotubes induced poly(L-lactide) crystallization: Surface induced conformational order. Macromolecules, 2009, 42: 3215–3218

    Article  CAS  Google Scholar 

  30. Xu ZH, Niu YH, Wang ZG, Li H, Yang L, Qiu J, Wang H. Enhanced nucleation rate of polylactide in composites assisted by surface acid oxidized carbon nanotubes of different aspect ratios. ACS Appl Mater Interfaces, 2011, 3: 3744–3753

    Article  CAS  Google Scholar 

  31. Avilés F, Cauich Rodríguez JV, Moo Tah L, May Pat A, Vargas Coronado R. Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon, 2009, 47: 2970–2975

    Article  Google Scholar 

  32. Wiltshire JG, Khlobystov AN, Li LJ, Lyapin SG, Briggs GAD, Nicholas RJ. Comparative studies on acid and thermal based selective purification of HiPCO produced single-walled carbon nanotubes. Chem Phys Lett, 2004, 386: 239–243

    Article  CAS  Google Scholar 

  33. Li J, Chajara K, Lindgren J, Grennberg H. Rapid acid-mediated purification of single-walled carbon nanotubes with homogenization of bulk properties. J Nanosci Nanotechnol, 2007, 7: 1525–1529

    Article  CAS  Google Scholar 

  34. Grennberg H, Andersson CH. Reproducibility and efficiency of carbon nanotube end-group generation and functionalization. Eur J Org Chem, 2009, 26: 4421–4428

    Google Scholar 

  35. Peng H, Alemany LB, Margrave JL, Khabashesku VN. Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. J Am Chem Soc, 2003, 125: 15174–15182

    Article  CAS  Google Scholar 

  36. Theodore M, Hosur M, Thomas J, Jeelani S. Influence of functionalization on properties of MWCNT-epoxy nanocomposites. Mater Sci Eng A, 2011, 528: 1192–1200

    Article  Google Scholar 

  37. Wepasnick KA, Smith BA, Schrote KE, Wilson H K, Diegelmann SR, Fairbrother D H. Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon, 2011, 49: 24–36

    Article  CAS  Google Scholar 

  38. Kovtyukhova NI, Mallouk TE, Pan L, Dickey EC. Individual single-walled nanotubes and hydrogels made by oxidative exfoliation of carbon nanotube ropes. J Am Chem Soc, 2003, 125: 9761–9769

    Article  CAS  Google Scholar 

  39. Murphy H, Papakonstantinou P, Okpalugo TIT. Raman study of multiwalled carbon nanotubes functionalized with oxygen groups. J Vac Sci Technol B, 2006, 24: 715–720

    Article  CAS  Google Scholar 

  40. Galiotis C, Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I. Chemical oxidation of multiwalled carbon nanotubes. Carbon, 2008, 46: 833–840

    Article  Google Scholar 

  41. Ziegler KJ, Gu ZN, Peng HQ, Flor EL, Hauge RH, Smalley RE. Controlled oxidative cutting of single-walled carbon nanotubes. J Am Chem Soc, 2005, 127: 1541–1547

    Article  CAS  Google Scholar 

  42. Forrest GA, Alexander AJ. A Model for the dependence of carbon nanotube length on acid oxidation time. J Phys Chem C, 2007, 111: 10792–10798

    Article  CAS  Google Scholar 

  43. Guadagno L, De Vivo B, Di Bartolomeo A, Lamberti P, Sorrentino A, Tucci V, Vertuccio L, Vittoria V. Effect of functionalization on the thermo-mechanical and electrical behavior of multi-wall carbon nanotube/epoxy composites. Carbon, 2011, 49: 1919–1930

    Article  CAS  Google Scholar 

  44. Osswald S, Havel M, Gogotsi Y. Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J Raman Spectrosc, 2007, 38: 728–736

    Article  CAS  Google Scholar 

  45. Gonzalez-Guerrero AB, Mendoza E, Pellicer E, Alsina F, Fernandez-Sanchez C, Lechuga LM. Discriminating the carboxylic groups from the total acidic sites in oxidized multi-wall carbon nanotubes by means of acid-base titration. Chem Phys Lett, 2008, 462: 256–259

    Article  CAS  Google Scholar 

  46. Zhao YY, Qiu ZB, Yang WT. Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(L-lactide). J Phys Chem B, 2008, 112: 16461–16468

    Article  CAS  Google Scholar 

  47. Giambastiani G, Cicchi S, Giannasi A, Luconi L, Rossin A, Mercuri F, Bianchini C, Brandi A, Melucci M, Ghini G, Stagnaro P, Conzatti L, Passaglia E, Zoppi M, Montini T, Fornasiero P. Functionalization of multiwalled carbon nanotubes with cyclic nitrones for materials and composites: Addressing the role of CNT sidewall defects. Chem Mater, 2011, 23: 1923–1938

    Article  CAS  Google Scholar 

  48. Chen GX, Kim HS, Park BH, Yoon JS. Multi-walled carbon nanotubes reinforced nylon 6 composites. Polymer, 2006, 47: 4760–4767

    Article  CAS  Google Scholar 

  49. Villmow T, Pötschke P, Pegel S, Häussler L, Kretzschmar B. Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer, 2008, 49: 3500–3509

    Article  CAS  Google Scholar 

  50. Wu DF, Wu L, Zhang M, Zhao YL. Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym Degrad Stab, 2008, 93: 1577–1584

    Article  CAS  Google Scholar 

  51. Xu ZH, Zhang YQ, Wang ZG, Sun N, Li H. Enhancement of electrical conductivity by changing phase morphology for composites consisting of polylactide and poly(epsilon-caprolactone) filled with acid-oxidized multiwalled carbon nanotubes. ACS Appl Mater Interfaces, 2011, 3: 4858–4864

    Article  CAS  Google Scholar 

  52. Khanna YP. Rheological mechanism and overview of nucleated crystallization kinetics. Macromolecules, 1993, 26: 3639–3643

    Article  CAS  Google Scholar 

  53. Wang ZG, Hsiao BS, Sirota EB, Agarwal P, Srinivas S. Probing the early stages of melt crystallization in polypropylene by simultaneous small- and wide-angle X-ray scattering and laser light scattering. Macromolecules, 2000, 33: 978–989

    Article  CAS  Google Scholar 

  54. Wu DF, Wu L, Zhou WD, Zhang M, Yang T. Crystallization and biodegradation of polylactide/carbon nanotube composites. Polym Eng Sci, 2010, 50: 1721–1733

    Article  CAS  Google Scholar 

  55. He Y, Fan Z, Hu Y, Wu T, Wei J, Li S. DSC analysis of isothermal melt-crystallization, glass transition and melting behavior of poly(L-lactide) with different molecular weights. Eur Polym J, 2007, 43: 4431–4439

    Article  CAS  Google Scholar 

  56. Panhuis MIH, Maiti A, Dalton AB, van den Noort A, Coleman JN, McCarthy B, Blau WJ. Selective interaction in a polymer-single-wall carbon nanotube composite. J Phys Chem B, 2003, 107: 478–482 Baskaran D, Mays JW, Bratcher MS. Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes. Chem Mater, 2005, 17: 3389–3397

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiGang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, Y., Zhang, Y., Yang, J. et al. Exponentially increased nucleation ability for poly(L-lactide) by adding acid-oxidized multiwalled carbon nanotubes with reduced aspect ratios. Sci. China Chem. 56, 181–194 (2013). https://doi.org/10.1007/s11426-012-4753-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4753-0

Keywords

Navigation