Skip to main content
Log in

Quantum chemical study on excited states and charge transfer of oxazolo[4,5-b]-pyridine derivatives

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The excited-state intramolecular charge transfer of four oxazolo[4,5-b]pyridine derivatives with different electron donating and electron withdrawing groups was investigated using the time-dependent density functional theory. The vertical excitation energies and the electronic structures were explored. Their distinct properties of absorption and fluorescence spectra in solvent phase were explained according to the electronic coupling matrix elements calculated by the Mulliken-Hush theory. The substituent on the oxazolo[4,5-b]pyridines will remarkably change their spectra properties and increase the first excited-state dipole moments. The effect of protonation on the absorption and fluorescence spectra was also investigated systematically. Our study suggests that the present method is feasible to explain charge transfer excitation and predict the properties of absorption and emission spectra in the studied systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rodriguez AD, Ramirez C, Rodriguez II, González E. Novel antimycobacterial benzoxazole alkaloids, from the west Indian Sea whip Pseudopterogorgia elisabethae. Org Lett, 1999, 1: 527–530

    Article  CAS  Google Scholar 

  2. Meyer MD, Hancock AA, Tietje K, Sippy KB, Prasad R, Stout DM, Arendsen DL, Donner BG, Carroll WA. Structure-activity studies for a novel series of N-(arylethyl)-N-(1,2,3,4-tetrahydronaphthalen-1-ylmethyl)-N-methylamines possessing dual 5-HT uptake inhibiting and alpha(2)-antagonistic activities. J Med Chem, 1997, 40: 1049–1062

    Article  CAS  Google Scholar 

  3. Sato Y, Yamada M, Yoshida S, Soneda T, Ishikawa M, Nizato T, Suzuki K, Konno F. Benzoxazole derivatives as novel 5-HT3 receptor partial agonists in the gut. J Med Chem, 1998, 41: 3015–3021

    Article  CAS  Google Scholar 

  4. Reynold MB, Deluca MR, Kerwin SM. The novel bis(benzoxazole) cytotoxic natural product UK-1 is a magnesium ion-dependent DNA binding agent and inhibitor of human topoisomerase II. Bioorg Chem, 1999, 27: 326–337

    Article  Google Scholar 

  5. Grumel V, Merour JY, Guillaumet G. Synthesis of substituted oxazolo[4,5-b]-pyridine derivatives. Heterocycles, 2001, 55: 1329–1345

    Article  CAS  Google Scholar 

  6. Bemis JE, Vu CB, Xie R, Nunes JJ, Ng PY, Disch JS, Milne JC, Carney DP, Lynch AV, Jin L, Smith JJ, Lavu S, Iffland A, Jirousek MR, Perni RB. Discovery of oxazolo[4,5-b]pyridines and related heterocyclic analogs as novel SIRT1 activators. Bioorg Med Chem Lett, 2009, 19: 2350–2353

    Article  CAS  Google Scholar 

  7. Viscardi G, Savarino P, Barni E. Carpignano R. Heterocyclic X-azolopyridine intermediates. J Heterocyc Chem, 1990, 27: 1825–1829

    Article  CAS  Google Scholar 

  8. Li YM, Xie YS, Zhang R, Jin K, Wang XN, Duan CY. Copper-catalyzed direct oxidative C-H amination of benzoxazoles with formamides or secondary amines under mild conditions. J Org Chem, 2011, 76: 5444–5449

    Article  CAS  Google Scholar 

  9. Pla-Dalmau A. 2-(2′-Hydroxyphenyl)benzothiazoles, -benzoxazoles, and -benzimidazoles for plastic scintillation applications. J Org Chem, 1995, 60: 5468–5473

    Article  CAS  Google Scholar 

  10. Kanegae Y, Peariso K, Martinez SS. Class of photostable, highly efficient UV dyes: 2-phenylbenzoxazoles. Appl Spectrosc, 1996, 50: 316–319

    Article  CAS  Google Scholar 

  11. Eseola AO, Li W, Sun WH, Zhang M, Xiao LW, Woods JAO. Lu minescent properties of some imidazole and oxazole based heterocycles: Synthesis, structure and substituent effects. Dyes Pigments, 2011, 88: 262–273

    Article  CAS  Google Scholar 

  12. Coe BJ, Harris JA, Brunschwig BS, Garín J, Orduna J, Coles SJ, Hursthouse MB. Contrasting linear and quadratic nonlinear optical behavior of dipolar pyridinium chromophores with 4-(dimethylamino)phenyl or ruthenium(II) ammine electron donor groups. J Am Chem Soc, 2004, 12: 10418–10427

    Article  Google Scholar 

  13. Burgess K, Jiao GS, Thoresen LH. Fluorescent, through-bond energy transfer cassettes for labeling multiple biological molecules in one experiment. J Am Chem Soc, 2003, 125: 14668–14669

    Article  Google Scholar 

  14. Willets KA, Callis PR, Moerner WE. Experimental and theoretical investigations of environmentally sensitive single-molecule fluorophores. J Phys Chem B, 2004, 108: 10465–10473

    Article  CAS  Google Scholar 

  15. Bard AJ, Lai RY, Kong XX, Jenekhe SA. Synthesis, cyclic voltammetric studies, and electrogenerated chemiluminescence of a new phenylquinoline-biphenothiazine donor-acceptor molecule. J Am Chem Soc, 2003, 126: 12631–12639

    Google Scholar 

  16. Li SL, Jiang KJ, Shao KF, Yang LM. Novel organic dyes for efficient dye-sensitized solar cells. Chem Commun, 2006, 2792–2794

  17. Mac M, Baran W, Uchacz T, Baran B, Suder M, Lésniewski S. Fluorescence properties of the derivatives of oxazolo[4,5-b]pyridyne. J Photochem Photobiol A, 2007, 192: 188–196

    Article  CAS  Google Scholar 

  18. Brédas JL, Pourtois G, Beljonne D, Cornil J, Ratner MA. Photoinduced electron-transfer processes along molecular wires based on phenylenevinylene oligomers: A quantum-chemical insight. J Am Chem Soc, 2002, 124: 4436–4447

    Article  Google Scholar 

  19. Zerza G, Scharber MC, Brabec CJ, Sariciftci NS, Gomez R, Segura JL, Martin N, Srdanov VI. Photoinduced charge transfer between tetracyano-anthraquino-dimethane derivatives and conjugated polymers for photovoltaics. J Phys Chem A, 2000, 104: 8315–8322

    Article  CAS  Google Scholar 

  20. Anstead GM, Katzenellenbogen JA. Design of integrated fluorescent estrogens-The 2nd donor effect on absorption, fluorescence, and ground-state molecular-orbital properties of trans-4,4′-methox-ynitrostilbene systems. J Phys Chem, 1990, 94: 1328–1334

    Article  CAS  Google Scholar 

  21. Sobolewski A, Domcke W. Charge transfer in aminobenzonitriles: Do they twist? Chem Phys Lett, 1996, 250: 428–436

    Article  CAS  Google Scholar 

  22. Grabowski ZR, Rotkiewicz K, Rettig W. Structural changes accompanying intramolecular electron transfer: Focus on twisted intramolecular charge-transfer states and structures. Chem Rev, 2003, 103: 3899–4031

    Article  Google Scholar 

  23. Li X, Liang M, Chakraborty A, Kondo M, Maroncelli M. Solvent-controlled intramolecular electron transfer in ionic liquids. J Phys Chem B, 2011, 115: 6592–6607

    Article  CAS  Google Scholar 

  24. Sissa C, Painelli A, Blanchard-Desce M, Terenziani F. Fluorescence anisotropy spectra disclose the role of disorder in optical spectra of branched intramolecular-charge-transfer molecules. J Phys Chem B, 2011, 115: 7009–7020

    Article  CAS  Google Scholar 

  25. Sung J, Kim P, Lee YO, Kim JS, Kim D. Characterization of ultrafast intramolecular charge transfer dynamics in pyrenyl derivatives: Systematic change of the number of peripheral N,N-dimethyaniline substituents. J Phys Chem Lett, 2011, 2: 818–823

    Article  CAS  Google Scholar 

  26. Wei NN, Hao C, Xiu ZL, Chen JW, Qiu JS. Time-dependent density functional theory study on excited-state dihydrogen bonding O-H… H-Ge of the dihydrogen-bonded phenol-triethylgermanium complex. J Comput Chem, 2010, 3: 2853–2858

    Google Scholar 

  27. Yin SH, Liu YF, Zhang W, Guo MX, Song P. Time-dependent density functional theory study on the hydrogen bonding-induced twisted intramolecular charge-transfer excited states of 2-(40-N,N-dime-thylaminophenyl)imidazo[4,5-b]pyridine. J Comput Chem, 2010, 31: 2056–2062

    CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck A,D, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, Revision D.02. Wallingford CT: Gaussian, Inc., 2004

    Google Scholar 

  29. He RX, Duan XH, Li XY. Quantum chemical study on excited states and electronic coupling matrix element in a catechol-bridge-dicyanoethylene system. J Phys Chem A, 2005, 109: 4154–4161

    Article  CAS  Google Scholar 

  30. Adamo C, Barone V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J Chem Phys, 1998, 108: 664–675

    Article  CAS  Google Scholar 

  31. Becke AD. Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  32. Duan XH, Li XY, He RX, Cheng XM. Time-dependent density functional theory study on intramolecular charge transfer and solvent effect of dimethylaminobenzophenone. J Chem Phys, 2005, 122: 084314 (1–9)

    Google Scholar 

  33. Bauernschmitt R, Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett, 1996, 256: 454–464

    Article  CAS  Google Scholar 

  34. Bartlett RJ, Hirata S, Ivanov S, Grabowski I. Time-dependent density functional theory employing optimized effective potentials. J Chem Phys, 2002, 116: 6468–6481

    Article  Google Scholar 

  35. Wiberg KB, de Oliveira AE, Trucks G. A comparison of the electronic transition energies for ethene, isobutene, formaldehyde, and acetone calculated using RPA, TDDFT, and EOM-CCSD. Effect of basis sets. J Phys Chem A, 2002, 106: 4192–4199

    Article  CAS  Google Scholar 

  36. Adamo C, Barone V. A TDDFT study of the electronic spectrum of s-tetrazine in the gas-phase and in aqueous solution. Chem Phys Lett, 2000, 330: 152–160

    Article  CAS  Google Scholar 

  37. Jödicke CJ, Lüthi HP. Time-dependent density-functional theory investigation of the formation of the charge transfer excited state for a series of aromatic donor-acceptor systems. Part I. J Chem Phys, 2002, 11: 4146–4156

    Article  Google Scholar 

  38. Jödicke CJ, Lüthi HP. Time-dependent density-functional theory investigation of the formation of the charge transfer excited state for a series of aromatic donor-acceptor systems. Part II. J Chem Phys, 2002, 117: 4157–4167

    Article  Google Scholar 

  39. Barone V, Rega N, Cossi M. Improving performance of polarizable continuum model for study of large molecules in solution. J Comput Chem, 1999, 20: 1186–1198

    Article  Google Scholar 

  40. Truhlar DG, Cramer CJ. Implicit solvation models: Equilibria, structure, spectra, and dynamics. Chem Rev, 1999, 99: 2161–2200

    Article  Google Scholar 

  41. Klamt A, Jonas V, Burger T, Lohrenz JCW. Refinement and parametrization of COSMO-RS. J Phys Chem A, 1998, 102: 5074–5085

    Article  CAS  Google Scholar 

  42. Zhao GJ, Han KL. Site-specific solvation of the photoexcited protochlorophyllide a in methanol: Formation of the hydrogen-bonded intermediate state induced by hydrogen-bond strengthening. Biophys J, 2008, 94: 38–46

    Article  CAS  Google Scholar 

  43. Zhao GJ, Han KL. Hydrogen bonding in the electronic excited state. Acc Chem Res, 2011, 45: 404–413

    Article  Google Scholar 

  44. Newton MD. Quantum chemical probes of electron-transfer kinetics -The nature of donor-acceptor interactions. Chem Rev, 1991, 91: 767–792

    Article  CAS  Google Scholar 

  45. Mikkelsen KV, Ratner MA. Electron-tunneling in solid-state electron-transfer reactions. Chem Rev, 1987, 87: 113–153

    Article  CAS  Google Scholar 

  46. Kestner NR, Logan J, Jortner J. Thermal electron-transfer reactions in polar-solvents. J Phys Chem, 1974, 78: 2148–2166

    Article  CAS  Google Scholar 

  47. Jortner J. Temperature-dependent activation-energy for electron-transfer between biological molecules. J Chem Phys, 1976, 64: 4860–4867

    Article  CAS  Google Scholar 

  48. Cave RJ, Newton MD. Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements. Chem Phys Lett, 1996, 249: 15–19

    Article  CAS  Google Scholar 

  49. Qi Q, Ha YQ, Sun YM. Structural and solvent effects on the spectroscopic properties of 1, 8-naphthalimide derivatives: A density functional study. Int J Quant Chem, 2011, 111: 2234–2241

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, R., Yuan, Y., Shen, W. et al. Quantum chemical study on excited states and charge transfer of oxazolo[4,5-b]-pyridine derivatives. Sci. China Chem. 55, 2186–2196 (2012). https://doi.org/10.1007/s11426-012-4746-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4746-z

Keywords

Navigation