Science China Chemistry

, Volume 55, Issue 12, pp 2554–2561 | Cite as

Novel smart supramolecular metallo-hydrogel that could selectively recognize and effectively remove Pb2+ in aqueous solution

Articles

Abstract

A series of novel and simple ligands based on a biscarboxyl-functionalized benzimidazole derivative were synthesized. The experiments showed that the ligand L2 as a low molecular weight (LMW) hydrogelator could form stable metallo-hydrogels in the presence of up to 0.3 equiv. of lead ions. The metallo-hydrogels were characterized using powder X-ray diffraction, scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopic techniques. When the molar ratio of L2:Pb2+ was in the range of 1:0.3 to 1:0.5 a translucent gel was produced. When the L2:Pb2+ molar ratio was higher than 1:0.5 the resulting gel tended to be opaque. The morphologies of these metallo-hydrogels were L2/Pb ratio dependent, ranging from worm-like to rod-shaped and nanofibrous. The FT-IR and X-ray diffraction (XRD) studies revealed that L2-Pb complexation was the main driving force for the formation of the metallo-hydrogels. In addition, these metallo-hydrogels exhibited outstanding thermostability and thermoreversibility, and displayed a reversible sol-gel transition induced by changes in pH and EDTA concentration. Importantly, ligand L2 showed an excellent capacity for the removal of Pb2+ in aqueous solution through the formation of metallo-hydrogels. At a L2:Pb molar ratio of 1:0.5 and below, the concentration of residual Pb2+ was as low as 7.6 × 10−5 mol/L in aqueous solution, and the removal ratio was as high as 95.4%. These results demonstrate that multi-channel responsive smart metallo-hydrogels have the potential to be widely applied in materials science, and might provide the basis for lead pollution capture and removal.

Keywords

supramolecular metallo-hydrogel lead ions recognize the removal ratio benzimidazole derivative 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11426_2012_4744_MOESM1_ESM.pdf (593 kb)
Supplementary material, approximately 592 KB.

References

  1. 1.
    Terech P, Weiss RG. Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev, 1997, 97(8): 3133–3160CrossRefGoogle Scholar
  2. 2.
    Estroff LA, Hamilton AD. Water gelation by small organic molecules. Chem Rev, 2004, 104(3): 1201–1218CrossRefGoogle Scholar
  3. 3.
    Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev, 2001, 101(7): 1869–1880CrossRefGoogle Scholar
  4. 4.
    Kiyonaka S, Sugiyaou K, Shinkai S, Hamachi I. First thermally responsive supramolecular polymer based on glycosylated amino acid. J Am Chem Soc, 2002, 124(37): 10954–10955CrossRefGoogle Scholar
  5. 5.
    Xing BG., Yu CW, Chow KH, Ho PL, Fu DG, Xu B. Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: A potential candidate for biomaterials. J Am Chem Soc, 2002, 124(50): 14846–14847CrossRefGoogle Scholar
  6. 6.
    Foster JA, Piepenbrock MOM, Lloyd GO, Clarke N, Howard JAK, Steed JW. Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth. Nat Chem, 2010, 2: 1037–1043CrossRefGoogle Scholar
  7. 7.
    Ajayaghosh A, Praveen VK. π-Organogels of self-assembled p-phen-ylenevinylenes: soft materials with distinct size, shape, and functions. Acc Chem Res, 2007, 40(8): 644–656CrossRefGoogle Scholar
  8. 8.
    Piepenbrock MOM, Lloyd G O, Clarke N, Steed JW. Metal- and anion-binding supramolecular gels. Chem Rev, 2010, 110(4): 1960–2004CrossRefGoogle Scholar
  9. 9.
    Tam YY, Wong K MCh, Yam VWW. Unusual luminescence enhancement of metallogels of alkynylplatinum(II) 2,6-bis(N-alkylbenzimidazol-2′-yl)pyridine complexes upon a gel-to-sol phase transition at elevated temperatures. J Am Chem Soc, 2009, 131(17): 6253–6260CrossRefGoogle Scholar
  10. 10.
    Kawano S, Fujita N, Shinkai S. A coordination gelator that shows a reversible chromatic change and sol-gel phase-transition behavior upon oxidative/reductive stimuli. J Am Chem Soc, 2004, 126(28): 8592–8593CrossRefGoogle Scholar
  11. 11.
    González YI, Kaler EW. Fibrous assemblies and water gelation in mixtures of lysine with sodium alkyl sulfates. Langmuir, 2005, 21(16): 7191–7199CrossRefGoogle Scholar
  12. 12.
    Liu JW, Yang Y, Chen ChF, Ma JT. Novel anion-tuning supramolecular gels with dual-channel response: reversible sol-gel transition and color changes. Langmuir, 2010, 26(11): 9040–9044CrossRefGoogle Scholar
  13. 13.
    Liu J, He PL, Yan JL, Fang XH, Peng JX, Liu KQ, Fang Y. An organometallic super-gelator with multiple-stimulus responsive properties. Adv Mater, 2008, 20(13): 2508–2511CrossRefGoogle Scholar
  14. 14.
    Naota T, Koori H. Molecules that assemble by sound: an application to the instant gelation of stable organic fluids. J Am Chem Soc, 2005, 127(26): 9324–9325CrossRefGoogle Scholar
  15. 15.
    Cravotto G, Cintas P. Molecular self-assembly and patterning induced by sound waves: the case of gelation. Chem Soc Rev, 2009, 38(9): 2684–2697CrossRefGoogle Scholar
  16. 16.
    Hamilton TD, Burćar D, Baltrusaitis J, Flanagan DR, Li YJ, Ghorai S, Tivanski AV, MacGillivray LR. Thixotropic hydrogel derived from a product of an organic solid-state synthesis: properties and densities of metal-organic nanoparticles. J Am Chem Soc, 2011, 133(10): 3365–3371CrossRefGoogle Scholar
  17. 17.
    Kuroiwa K, Shibata T, Takada A, Nemoto N, Kimizuka N. Heat-set gel-like networks of lipophilic Co(II) triazole complexes in organic media and their thermochromic structural transitions. J Am Chem Soc, 2004, 126(7): 2016–2021CrossRefGoogle Scholar
  18. 18.
    Piepenbrock, MM, Clarke N, Steed JW. Shear induced gelation in a copper(II) metallogel: new aspects of ion-tunable rheology and gel-reformation by external chemical stimuli. Soft Matter, 2010, 6: 3541–3547CrossRefGoogle Scholar
  19. 19.
    Kishimura A, Yamashita T, Aida T. Phosphorescent organogels via “metallophilic” interactions for reversible RGB-color switching. J Am Chem Soc, 2005, 127(1): 179–183CrossRefGoogle Scholar
  20. 20.
    Peng F, Li GZ, Liu XX, Wu SZ, Tong ZH. Redox-responsive gel-sol/sol-gel transition in poly(acrylic acid) aqueous solution containing Fe(III) ions switched by light. J Am Chem Soc, 2008, 130(48): 16166–16167CrossRefGoogle Scholar
  21. 21.
    Komatsu H, Matsumoto S, Tamaru S, Kaneko K, Ikeda M, Hamachi I. Supramolecular hydrogel exhibiting four basic logic gate functions to fine-tune substance release. J Am Chem Soc, 2009, 131(15): 5580–5585CrossRefGoogle Scholar
  22. 22.
    Estroff L A, Leiserowitz L, Addadi L, Weiner S, Hamilton AD. Characterization of an organic hydrogel: a cryo-transmission electron microscopy and x-ray diffraction study. Adv. Mater, 2003, 15(1): 38–42CrossRefGoogle Scholar
  23. 23.
    Makarević J, Jokić M, Perić B, Tomišić V, Kojić-Prodić B, Zinić M. Bis(amino acid) oxalyl amides as ambidextrous gelators of water and organic solvents: supramolecular gels with temperature dependent assembly/dissolution equilibrium. Chem-Eur J, 2001, 7(15): 3328–3341CrossRefGoogle Scholar
  24. 24.
    Heeres A, van der Pol C, Stuart M, Friggeri A, Feringa BL, van Esch J. Orthogonal self-assembly of low molecular weight hydrogelators and surfactants. J Am Chem Soc, 2003, 125(47): 14252–14253CrossRefGoogle Scholar
  25. 25.
    Kobayashi H, Figuregeri A, Koumoto K, Amaike M, Shinkai S, Reinhoudt DN. Molecular design of “super” hydrogelators: understanding the gelation process of azobenzene-based sugar derivatives in water. Org Lett, 2002, 4(9):1423–1426CrossRefGoogle Scholar
  26. 26.
    Pochan DJ, Schneider JP, Kretsinger J, Ozbas B, Rajagopal K, Haines L. Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. J Am Chem Soc, 2003, 125(39): 11802–11803CrossRefGoogle Scholar
  27. 27.
    Toledano S, Williams RJ, Jayawarna V, Ulijn RV. Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. J Am Chem Soc, 2006, 128(4): 1070–1071CrossRefGoogle Scholar
  28. 28.
    Park S M, Lee YS, Kim B H. Novel low-molecular-weight hydrogelators based on 2′-deoxyuridine. Chem Commun, 2003, 2912-2913Google Scholar
  29. 29.
    Maitra U, Mukhopadhyay S, Sarkar A, Rao P, Indi SS. Hydrophobic pockets in a nonpolymeric aqueous gel: observation of such a gelation process by color change. Angew Chem, Int Ed, 2001, 40(12): 2381–2283CrossRefGoogle Scholar
  30. 30.
    Terech P, Sangeetha NM, Deme’ B, Maitra U. Self-assembled networks of ribbons in molecular hydrogels of cationic deoxycholic acid analogues. J Phys Chem B, 2005, 109(25): 12270–12276CrossRefGoogle Scholar
  31. 31.
    Caplan MR, Moore PN, Zhang S, Kamm RD, Lauffenburger DA. Self-assembly of a β-Sheet protein governed by relief of electrostatic repulsion relative to van der waals attraction. Biomacromolecules, 2000, 1(4): 627–631CrossRefGoogle Scholar
  32. 32.
    Aggeli A, Bell M, Boden, N, Carrick LM, Strong AL. Self-assembling peptide polyelectrolyte β-sheet complexes form nematic hydrogels. Angew Chem, Int Ed, 2003, 42(45): 5603–5606CrossRefGoogle Scholar
  33. 33.
    Wei Q, James SL. A metal-organic gel used as a template for a porous organic polymer. Chem Commun, 2005, 1555-1556Google Scholar
  34. 34.
    Nriagu JO, Pacyna JM. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 1988, 333: 134–139CrossRefGoogle Scholar
  35. 35.
    Friberg L, Nordberg GF, Vouk VB. Handbook on the toxicology of metals. Amsterdam: Elsevier/North-Holland Biomedical, 1979Google Scholar
  36. 36.
    Keith L, Telliard W. ES&T special report: priority pollutants: a perspective view. Environ Sci Technol, 1979, 13(4):416–423CrossRefGoogle Scholar
  37. 37.
    Ju XJ, Zhang SB, Zhou MY, Xie R, Yang LH, Chu LY. Novel heavy-metal adsorption material: ion-recognition p(NIPAM-co-BCAm) hydrogels for removal of lead(II) ions. J Hazard Mater, 2009, 167(1-3): 114–118CrossRefGoogle Scholar
  38. 38.
    Zhang Y M, Lin Q, Wei TB, Qin XP, Li Y. A novel smart organogel which could allow a two channel anion response by proton controlled reversible sol-gel transition and color changes. Chem Commun, 2009, 6074–6076Google Scholar
  39. 39.
    Liu MX, Wei TB, Lin Q, Zhang YM. A novel 5-mercapto triazole schiff base as a selective chromogenic chemosensor for Cu2+. Spectrochim Acta, Part A, 2011, 79: 1837–1842CrossRefGoogle Scholar
  40. 40.
    Zhou XY, Yu BR, Guo YL, Tang XL, Zhang HH, Liu WS. Both visual and fluorescent sensor for Zn2+ based on quinoline platform. Inorg Chem, 2010, 49(9): 4002–4007CrossRefGoogle Scholar
  41. 41.
    Gupta, SP, Singh. Syntheis of some 2-phenoxymethylbenzimidazoles. Indian Chem Soc, 1964, 41: 867–868Google Scholar
  42. 42.
    Liu YR, He LS, Zhang JY, Wang XB, Su ChY. Evolution of spherical assemblies to fibrous networked pd(II) metallogels from a pyridine-based tripodal ligand and their catalytic property. Chem Mater, 2009, 21(3): 557–563CrossRefGoogle Scholar
  43. 43.
    Adarsh NN, Sahoo P, Dastidar P. Is a crystal engineering approach useful in designing metallogels? a case study. Cryst Growth Des, 2010, 10(11): 4976–4986CrossRefGoogle Scholar
  44. 44.
    Byrne P, Lloyd GO, Applegarth L, Anderson KM, Clarke N, Steed JW. Metal-induced gelation in dipyridyl ureas. New J Chem, 2010, 34(10): 2261–2274CrossRefGoogle Scholar
  45. 45.
    Nakamoto k. Infrared and raman spectra of inorganic and coordination compounds. New York: Wiley and Sons, 1986: 256–276Google Scholar
  46. 46.
    Odriozola I, Ormategui N, Loinaz I., Pomposo JA, Grande HJ. Coinage metal-glutathione thiolates as a new class of supramolecular hydrogelators. Macromol Symp, 2008, 266(1): 96–100CrossRefGoogle Scholar
  47. 47.
    Hsu THT, Naidu JJ, Yang BJ, Jang MY, Lin IJB. Self-assembly of silver(I) and gold(I) N-heterocyclic carbene complexes in solid state. mesophase, and solution. Inorg Chem, 2012, 51(1): 98–108CrossRefGoogle Scholar
  48. 48.
    Liu Y, Zhang YM, Hua MT, Liu MX, Wei TB. Benzimidazoles ionic liquids and lead(II) coordination polymer: synthesis, crystal structure and electrochemical properties. Chin J Inorg Chem, 2011, 27(8): 1569–1573Google Scholar
  49. 49.
    Zhang YM, Liu Y, Lin Q, Hua MT, Wang WF, Ma YJ, Wei TB. Novel intercalation metal complexes: Microwave synthesis, crystal structure and properties. Sci China Chem, 2011, 41(5): 869–877Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • TaiBao Wei
    • 1
  • JianPeng Dang
    • 1
  • Qi Lin
    • 1
  • Hong Yao
    • 1
  • Yong Liu
    • 1
  • WanQiang Zhang
    • 1
  • JianJun Ming
    • 1
  • YouMing Zhang
    • 1
  1. 1.Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical EngineeringNorthwest Normal UniversityLanzhouChina

Personalised recommendations