Skip to main content
Log in

Interaction of citrate with Pt(100) surface investigated by cyclic voltammetry towards understanding the structure-tuning effect in nanomaterials synthesis

  • Articles
  • Special Topic Growth Mechanism of Nanostructures
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

This study aims to understand the effects of functional agents such as capping agents, stabilizers, surfactants and additives in shape-controlled synthesis of nanomaterials. The well-defined Pt(100) single crystal surface was used as a model to investigate its interaction with citrate, a capping agent that is often used in shape-controlled synthesis of nanomaterials. It demonstrated that, through a systematic study of electrochemical cyclic voltammetry, the presence of citrate in solution could increase the current peak density of hydrogen adsorption at high potential (j p,L), while decrease proportionally the current peak density of hydrogen adsorption at low potential (j p,S). Furthermore, the increase of citrate concentration shifted negatively the peak potentials (E p,L and E p,S) of both j p,L and j p,S. The results indicated that the interaction of citrate with Pt(100) surface could induce increasing the (100) surface domains of two-dimensional long range order (2D-(100)), and decreasing the (100) surface domains of one-dimensional short range order (1D-(100)). It also revealed that the interaction of citrate with Pt(100) surface could stabilize the 2D-(100) structure. The findings gained in this study implied that the citrate may lead to form stable 2D-(100) domains on Pt nanoparticles upon the shape-controlled synthesis of Pt nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316: 732–735

    Article  CAS  Google Scholar 

  2. Xia YN, Xiong YJ, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew Chem Int Ed, 2009, 48: 60–103

    Article  CAS  Google Scholar 

  3. Tao AR, Habas S, Yang PD. Shape control of colloidal metal nanocrystals. Small, 2008, 4: 310–325

    Article  CAS  Google Scholar 

  4. Niu WX, Zhang L, Xu GB. Shape-controlled synthesis of single-crystalline palladium nanocrystals. Acs Nano, 2010, 4: 1987–1996

    Article  CAS  Google Scholar 

  5. Xiao JY, Qi LM. Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale, 2011, 3: 1383–1396

    Article  CAS  Google Scholar 

  6. Yang CW, Chanda K, Lin PH, Wang YN, Liao CW, Huang MH. Fabrication of Au-Pd core-shell heterostructures with systematic shape evolution using octahedral nanocrystal cores and their catalytic activity. J Am Chem Soc, 2011, 133: 19993–20000

    Article  CAS  Google Scholar 

  7. Xiong YJ, Xia YN. Shape-controlled synthesis of metal nanostructures: The case of palladium. Adv Mater, 2007, 19: 3385–3391

    Article  CAS  Google Scholar 

  8. Zhang H, Jin MS, Wang JG, Li WY, Camargo PHC, Kim MJ, Yang DR, Xie ZX, Xia YN. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J Am Chem Soc, 2011, 133: 6078–6089

    Article  CAS  Google Scholar 

  9. Deng YJ, Tian N, Zhou ZY, Huang R, Liu ZL, Xiao J, Sun SG. Alloy tetrahexahedral Pd-Pt catalysts: Enhancing significantly the catalytic activity by synergy effect of high-index facets and electronic structure. Chem Sci, 2012, 3: 1157–1161

    Article  CAS  Google Scholar 

  10. Tian N, Zhou ZY, Yu NF, Wang LY, Sun SG. Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation. J Am Chem Soc, 2010, 132: 7580–7581

    Article  CAS  Google Scholar 

  11. Zhou ZY, Huang ZZ, Chen DJ, Wang Q, Tian N, Sun SG. High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew Chem Int Ed, 2010, 49: 411–414

    Article  CAS  Google Scholar 

  12. Chen YX, Chen SP, Zhou ZY, Tian N, Jiang YX, Sun SG, Ding Y, Wang ZL. Tuning the shape and catalytic activity of Fe nanocrystals from rhombic dodecahedra and tetragonal bipyramids to cubes by electrochemistry. J Am Chem Soc, 2009, 131: 10860–10862

    Article  CAS  Google Scholar 

  13. Tsung C-K, Kuhn JN, Huang WY, Aliaga C, Hung L-I, Somorjai GA, Yang PD. Sub-10 nm platinum nanocrystals with size and shape control: Catalytic study for ethylene and pyrrole hydrogenation. J Am Chem Soc, 2009, 131: 5816–5822

    Article  CAS  Google Scholar 

  14. Jin MS, Liu HY, Zhang H, Xie ZX, Liu JY, Xia YN. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes < 10 nm for application in CO oxidation. Nano Res, 2011, 4: 83–91

    Article  CAS  Google Scholar 

  15. Chen M, Wu BH, Yang J, Zheng NF. Small adsorbate-assisted shape control of Pd and Pt nanocrystals. Adv Mater, 2012, 24: 862–879

    Article  CAS  Google Scholar 

  16. Wu BH, Zheng NF, Fu G. Small molecules control the formation of Pt nanocrystals: A key role of carbon monoxide in the synthesis of Pt nanocubes. Chem Commun, 2011, 47: 1039–1041

    Article  CAS  Google Scholar 

  17. Sun YG, Xia YN. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298 (5601): 2176–2179

    Article  Google Scholar 

  18. Song H, Kim F, Connor S, Somorjai GA, Yang PD. Pt nanocrystals: Shape control and Langmuir-Blodgett monolayer formation. J Phys Chem B, 2005, 109: 188–193

    Article  CAS  Google Scholar 

  19. González-Peña OI, Chapman TW, Vong YM, Antaño-López R. Study of adsorption of citrate on Pt by CV and EQCM. Electrochim Acta, 2008, 53: 5549–5554

    Article  Google Scholar 

  20. Henglein A, Giersig M. Reduction of Pt (II) by H2. Effects of citrate and NaOH and reaction mechanism. J Phys Chem B, 2000, 104: 6767–6772

    Article  CAS  Google Scholar 

  21. Wang YX, Fang JY. Selective epitaxial growth of silver nanoplates. Angew Chem Int Ed, 2011, 50: 992–993

    Article  CAS  Google Scholar 

  22. Lim B, Jiang MJ, Tao J, Camargo PHC, Zhu YM, Xia YN. Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv Funct Mater, 2009, 19: 189–200

    Article  CAS  Google Scholar 

  23. Sun SG, Lin Y. Kinetics of isopropanol oxidation on Pt(111), Pt(110), Pt(100), Pt(610) and Pt(211) single crystal electrodes: Studies of in situ time-resolved FTIR spectroscopy. Electrochim Acta, 1998, 44: 1153–1162

    Article  CAS  Google Scholar 

  24. Marković NM, Ross Jr PN. Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep, 2002, 45: 117–229

    Article  Google Scholar 

  25. Tian N, Zhou ZY, Sun SG. Platinum metal catalysts of high-index surfaces: from single-crystal planes to electrochemically shape-controlled nanoparticles. J Phys Chem C, 2008, 112: 19801–19817

    Article  CAS  Google Scholar 

  26. Solla-Gullón J, Rodríguez P, Herrero E, Aldaz A, Feliu JM. Surface characterization of platinum electrodes. Phys Chem Chem Phys, 2008, 10: 1359–1373

    Article  Google Scholar 

  27. Sun SG, Chen AC. Effects of ethylene glycol (EG) concentration and pH of solutions on electrocatalytic properties of Pt (111) electrode in EG oxidation — A comparison study with adjacent planes of platinum single crystal situated in [1\(\bar 1\)0] and [012358-2] crystallographic zones. Electrochim Acta, 1994, 39: 969–973

    Google Scholar 

  28. Kunze J, Burgess I, Nichols R, Buess-Herman C, Lipkowski J. Electrochemical evaluation of citrate adsorption on Au(111) and the stability of citrate-reduced gold colloids. J Electroanal Chem, 2007, 599: 147–159

    Article  CAS  Google Scholar 

  29. Floate S, Hosseini M, Arshadi MR, Ritson D, Young KL, Nichol RJ. An in-situ infrared spectroscopic study of the adsorption of citrate on Au(111) electrodes. J Electroanal Chem, 2003, 542: 67–74

    Article  CAS  Google Scholar 

  30. Sun SG, Chen AC, Huang TS, Li JB, Tian ZW. Electrocatalytic properties of Pt(111), Pt(332), Pt(331) and Pt(110) single crystal electrodes towards ethylene glycol oxidation in sulphuric acid solutions. J Electroanal Chem, 1992, 340: 213–226

    Article  CAS  Google Scholar 

  31. Clavilier J, Armand D, Sun SG, Petit M. Electrochemical adsorption behaviour of platinum stepped surfaces in sulphuric acid solutions. J Electroanal Chem, 1980, 205: 267–277

    Google Scholar 

  32. Rodes A, Zamakhchari MA, Achi KE, Clavilier J. Electrochemical behaviour of Pt(100) in various acidic media: Part I. On a new voltammetric profile of Pt(100) in perchloric acid and effects of surface defects. J Electroanal Chem, 1991, 305: 115–129

    Article  CAS  Google Scholar 

  33. Clavilier J, Actii KE, Petit M, Rodes A, Zamakhchari MA. Electrochemical monitoring of the thermal reordering of platinum single-crystal surfaces after metallographic polishing from the early stage to the equilibrium surfaces. J Electroanal Chem, 1990, 295: 333–356

    Article  CAS  Google Scholar 

  34. Kibler LA, Cuesta A, Kleinert M, Kolb DM. In-situ STM characterisation of the surface morphology of platinum single crystal electrodes as a function of their preparation. J Electroanal Chem, 2000, 484: 73–82

    Article  CAS  Google Scholar 

  35. Garcia-Araez N, Climent V, Herrero E, Feliu J, Lipkowski J. Thermodynamic studies of chloride adsorption at the Pt (111) electrode surface from 0.1 M HClO4 solution. J Electroanal Chem, 2005, 576: 33–41

    Article  CAS  Google Scholar 

  36. Solla-Gullón J, Rodríguez P, Herrero E, Aldaz A, Feliu JM. Surface characterization of platinum electrodes. Phys Chem Chem Phys, 2008, 10: 1359–1373

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShiGang Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Ye, J., Xu, C. et al. Interaction of citrate with Pt(100) surface investigated by cyclic voltammetry towards understanding the structure-tuning effect in nanomaterials synthesis. Sci. China Chem. 55, 2353–2358 (2012). https://doi.org/10.1007/s11426-012-4740-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4740-5

Keywords

Navigation