Skip to main content
Log in

Ferric perchlorate-mediated radical reactions of [60]fullerene

  • Reviews
  • Progress of Projects Supported by NSFC Special Topic Physical Organic Chemistry in China
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Transition-metal-salt-mediated radical reactions of fullerenes have attracted extensive attention as a new and important method for fullerene functionalization. The application of relatively cheap and easily available ferric perchlorate (Fe(ClO4)3) to the synthesis of [60]fullerene (C60) has demonstrated remarkable advantages and afforded a series of novel fullerene derivatives. In this review we present our recent progress in this area and summarize the reactions of C60 with malonate esters, β-keto esters, nitriles, aldehydes/ketones, and arylboronic acids in the presence of Fe(ClO4)3 to afford the C60-fused disubstituted lactones, C60-fused hemiketal, C60-fused dihydrofuran, C60-fused oxazoles, C60-fused 1,3-dioxolanes, and fullerenyl boronic esters. The possible reaction mechanisms for the above-mentioned reactions are also described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor R, Walton DRM. The chemistry of fullerenes. Nature, 1993, 363: 685–693

    Article  CAS  Google Scholar 

  2. Hirsch A. Addition reactions of buckminsterfullerene (C60). Synthesis, 1995, 895–913

  3. Yurovskaya MA, Trushkov IV. Cycloaddition to buckminsterfullerene C60: Advancements and future prospects. Russ Chem Bull Int Ed, 2002, 51: 367–443

    Article  CAS  Google Scholar 

  4. Thilgen C, Diederich F. Structural aspects of fullerene chemistry: A journey through fullerene chirality. Chem Rev, 2006, 106: 5049–5135

    Article  CAS  Google Scholar 

  5. Matsuo Y, Nakamura E. Selective multiaddition of organocopper reagents to fullerenes. Chem Rev, 2008, 108: 3016–3028

    Article  CAS  Google Scholar 

  6. Prato M. Fullerene materials. Top Curr Chem, 1999, 199: 173–187

    Article  CAS  Google Scholar 

  7. Diederich F, Gómez-López M. Supramolecular fullerene chemistry. Chem Soc Rev, 1999, 28: 263–277

    Article  CAS  Google Scholar 

  8. Nakamura E, Isobe H. Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc Chem Res, 2003, 36: 807–815

    Article  CAS  Google Scholar 

  9. Guldi DM, Zerbetto F, Georgakilas V, Prato M. Ordering fullerene materials at nanometer dimensions. Acc Chem Res, 2005, 38: 38–43

    Article  CAS  Google Scholar 

  10. Wang GW, Li FB, Chen ZX, Wu P, Cheng B, Xu Y. Synthesis of [60]fullerene acetals and ketals: Reaction of [60]fullerene with aldehydes/ketones and alkoxides. J Org Chem, 2007, 72: 4779–4783

    Article  CAS  Google Scholar 

  11. Filippone S, Maroto EE, Martín-Domenech Á, Suarez M, Martín N. An efficient approach to chiral fullerene derivatives by catalytic enantioselective 1,3-dipolar cycloadditions. Nat Chem, 2009, 1: 578–582

    Article  CAS  Google Scholar 

  12. Wang GW, Lu YM, Chen ZX. 1,4-Fullerenols C60ArOH: Synthesis and functionalization. Org Lett, 2009, 11: 1507–1510

    Article  CAS  Google Scholar 

  13. Wang GW, Lu YM, Chen ZX, Wu SH. An alternative type of fullerene products from the reaction of [60]fullerene with alkoxides and subsequent derivatization. J Org Chem, 2009, 74: 4841–4848

    Article  CAS  Google Scholar 

  14. Xiao Z, Matsuo Y, Nakamura E. Copper-catalyzed formal [4+2] annulation between alkyne and fullerene bromide. J Am Chem Soc, 2010, 132: 12234–12236

    Article  CAS  Google Scholar 

  15. Nambo M, Segawa Y, Itami K. Aziridinofullerene: A versatile platform for functionalized fullerenes. J Am Chem Soc, 2011, 133: 2402–2405

    Article  CAS  Google Scholar 

  16. Maroto EE, de Cózar A, Filippone S, Martín-Domenech Á, Suarez M, Cossío FP, Martín N. Hierarchical selectivity in fullerenes: Site-, regio-, diastereo-, and enantiocontrol of the 1,3-dipolar cycloaddition to C70. Angew Chem Int Ed, 2011, 50: 6060–6064

    Article  CAS  Google Scholar 

  17. Lu S, Jin T, Bao M, Yamamoto Y. Cobalt-catalyzed hydroalkylation of [60]fullerene with active alkyl bromides: Selective synthesis of monoalkylated fullerenes. J Am Chem Soc, 2011, 133: 12842–12848

    Article  CAS  Google Scholar 

  18. Lu S, Jin T, Kwon E, Bao M, Yamamoto Y. Highly efficient Cu(OAc)2-catalyzed dimerization of monofunctionalized hydrofullerenes leading to single-bonded [60]fullerene dimers. Angew Chem Int Ed, 2012, 51: 802–806

    Article  CAS  Google Scholar 

  19. Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF. Radical reactions of C60. Science, 1991, 254: 1183–1185

    Article  CAS  Google Scholar 

  20. Krusic PJ, Wasserman E, Parkinson BA, Malone B, Holler ER Jr, Keizer PN, Morton JR, Preston KF. Electron spin resonance study of the radical reactivity of C60. J Am Chem Soc, 1991, 113: 6274–6275

    Article  CAS  Google Scholar 

  21. Morton JR, Negri F, Preston KF. Addition of free radicals to C60. Acc Chem Res, 1998, 31: 63–69

    Article  CAS  Google Scholar 

  22. For reviews, see: (a) Wang GW, Li FB. Radical reactions of [60]fullerene mediated by manganese(III) acetate dihydrate. J Nanosci Nanotech, 2007, 7: 1162–1175

    Article  CAS  Google Scholar 

  23. Wang GW, Li FB. Transition metal salt-mediated radical reactions of [60]fullerene. Curr Org Chem, 2012, 16: 1109–1127

    Article  CAS  Google Scholar 

  24. Zhang TH, Lu P, Wang F, Wang GW. Reaction of [60]fullerene with free radicals generated from active methylene compounds by manganese(III) acetate dihydrate. Org Biomol Chem, 2003, 1: 4403–4407

    Article  CAS  Google Scholar 

  25. Wang GW, Zhang TH, Cheng X, Wang F. Selective addition to [60]fullerene of two different radicals generated from Mn(III)-based radical reaction. Org Biomol Chem, 2004, 2: 1160–1163

    Article  CAS  Google Scholar 

  26. Li C, Zhang D, Zhang X, Wu S, Gao X. Manganese(III) acetate-mediated free radical reactions of [60]fullerene with β-dicarbonyl compounds. Org Biomol Chem, 2004, 2: 3464–3469

    Article  CAS  Google Scholar 

  27. Zou YL, Zhang DW, Liu Y, Luo Z, Wu SH, Gao X. Manganese(III) acetate based radical cycloaddition of tertiary diallylamines with [60]fullerene. Chin J Org Chem, 2004, 24: 1614–1618

    CAS  Google Scholar 

  28. Wang GW, Li FB. Cu(II) acetate- and Mn(III) acetate-mediated radi cal reactions of [60]fullerene with ketonic compounds. Org Biomol Chem, 2005, 3: 794–797

    Article  CAS  Google Scholar 

  29. Cheng X, Wang GW, Murata Y, Komatsu K. Solvent-free synthesis of dihydrofuran-fused [60]fullerene derivatives by high-speed vibration milling. Chin Chem Lett, 2005, 16: 1327–1329

    CAS  Google Scholar 

  30. Wang GW, Yang HT, Miao CB, Xu Y. Radical reactions of [60]fullerene with β-enamino carbonyl compounds mediated by manganese(III) acetate. Org Biomol Chem, 2006, 4: 2595–2599

    Article  CAS  Google Scholar 

  31. Wang GW, Li FB, Zhang TH. [60]Fullerene-fused lactones: Manganese( III) acetate-mediated synthesis and novel reductive ring opening. Org Lett, 2006, 8: 1355–1358

    Article  CAS  Google Scholar 

  32. Li FB, Liu TX, Huang YS, Wang GW. Synthesis of fullerene-fused lactones and fullerenyl esters: Radical reaction of [60]fullerene with carboxylic acids promoted by manganese(III) acetate and lead(IV) acetate. J Org Chem, 2009, 74: 7743–7749

    Article  CAS  Google Scholar 

  33. Li FB, Zhu SE, Wang GW. Manganese(III) acetate-mediated radical reaction of [60]fullerene with bromoacetic acid, 3-chloro-propionic acid or 1-naphthylacetic acid. Chin Sci Bull, 2010, 55: 2909–2914

    Article  Google Scholar 

  34. Wang GW, Wang CZ, Zhu SE, Murata Y. Manganese(III) acetate-mediated radical reaction of [60]fullerene with phosphonate esters affording unprecedented separable singly-bonded [60]fullerene dimmers. Chem Commun, 2011, 47: 6111–6113

    Article  CAS  Google Scholar 

  35. Wang GW, Wang CZ, Zou JP. Radical reaction of [60]fullerene with phosphorus compounds mediated by manganese(III) acetate. J Org Chem, 2011, 76: 6088–6094

    Article  CAS  Google Scholar 

  36. Liu TX, Li FB, Wang GW. Synthesis of [60]fullerene-fused tetrahydronaphthalene and indane derivatives via a pathway switched by aluminum chloride. Org Lett, 2011, 13: 6130–6133

    Article  CAS  Google Scholar 

  37. Chen ZX, Wang GW. One-pot sequential synthesis of acetoxylated [60]fullerene derivatives. J Org Chem, 2005, 70: 2380–2383

    Article  CAS  Google Scholar 

  38. Chuang SC, Clemente FR, Khan SI, Houk KN, Rubin Y. Approaches to open fullerenes: A 1,2,3,4,5,6-hexaadduct of C60. Org Lett, 2006, 8: 4525–4528

    Article  CAS  Google Scholar 

  39. Tzirakis MD, Orfanopoulos M. Decatungstate-mediated radical reactions of C60 with substituted toluenes and anisoles: A new photochemical functionalization strategy for fullerenes. Org Lett, 2008, 10: 873–876

    Article  CAS  Google Scholar 

  40. Tzirakis MD, Orfanopoulos M. Acyl radical reactions in fullerene chemistry: Direct acylation of [60]fullerene through an efficient decatungstate-photomediated approach. J Am Chem Soc, 2009, 131: 4063–4069

    Article  CAS  Google Scholar 

  41. Tzirakis MD, Orfanopoulos M. Photochemical addition of ethers to C60: Synthesis of the simplest [60]fullerene/crown ether conjugates. Angew Chem Int Ed, 2010, 49: 5891–5893

    CAS  Google Scholar 

  42. Tzirakis MD, Alberti MN, Orfanopoulos M. Hydroxyalkylation of [60]fullerene: Free radical addition of alcohols to C60. Chem Commun, 2010, 46: 8228–8230

    Article  CAS  Google Scholar 

  43. Gan L, Huang S, Zhang X, Zhang A, Cheng B, Cheng H, Li X, Shang G. Fullerenes as a tert-butylperoxy radical trap, metal catalyzed reaction of tert-butyl hydroperoxide with fullerenes, and formation of the first fullerene mixed peroxides C60(O)(OOtBu)4 and C70(OOtBu)10. J Am Chem Soc, 2002, 124: 13384–13385

    Article  CAS  Google Scholar 

  44. Huang S, Xiao Z, Wang F, Gan L, Zhang X, Hu X, Zhang S, Lu M, Pan Q, Xu L. Selective preparation of oxygen-rich [60]fullerene derivatives by stepwise addition of tert-butylperoxy radical and further functionalization of the fullerene mixed peroxides. J Org Chem, 2004, 69: 2442–2453

    Article  CAS  Google Scholar 

  45. Bernstein R, Foote CS. Activated carbon as the reagent for the oxidative cyclization of fullerene adducts. Tetrahedron Lett, 1998, 39: 7051–7054

    Article  CAS  Google Scholar 

  46. Wang GW, Zhu B. A facile access to [60]fullerene-fused δ-lactones: Unexpected reaction pathway of benzenediazonium-2-carboxylates controlled by organic bases. Chem Commun, 2009, 1769–1771

  47. Li FB, You X, Wang GW. Synthesis of disubstituted [60]fullerene-fused lactones: Ferric perchlorate-promoted reaction of [60]fullerene with malonate esters. Org Lett, 2010, 12: 4896–4899

    Article  CAS  Google Scholar 

  48. Wang GW, Li FB, Xu Y. Novel functionalizations of [60]fullerene-fused lactones. J Org Chem, 2007, 72: 4774–4778

    Article  CAS  Google Scholar 

  49. Citterio A, Sebastiano R, Marion A, Santi R. Synthesis of substituted tetrahydronaphthalenes by Mn(III), Ce(IV), and Fe(III) oxidation of substituted diethyl α-benzylmalonates in the presence of olefins. J Org Chem, 1991, 56: 5328–5335

    Article  CAS  Google Scholar 

  50. Citterio A, Sebastiano R, Carvayal MC. Oxidation of diethyl (pyridylmethy1) malonates with Mn(III) acetate, Ce(IV) ammonium nitrate, and iron(III) perchlorate in the presence of alkenes and alkynes. J Org Chem, 1991, 56: 5335–5341

    Article  CAS  Google Scholar 

  51. Li FB, Zhu SE, You X, Wang GW. Ferric perchlorate-promoted reaction of [60]fullerene with β-keto esters. Chin Sci Bull, 2012, 57: 2269–2272

    Article  CAS  Google Scholar 

  52. Ohno M, Yashiro A, Eguchi S. Base-catalysed oxidative [3+2] cycloaddition reaction of [60]fullerene with β-dicarbonyl compounds. Chem Commun, 1996, 291–292

  53. Wang GW, Zhang TH, Li YJ, Lu P, Zhan H, Liu YC, Murata Y, Komatasu K. Novel solvent-free reaction of C60 with active methylene compounds in the presence of Na2CO3 under high-speed vibration milling. Tetrahedron Lett, 2003, 44: 4407–4409

    Article  CAS  Google Scholar 

  54. Zhang TH, Wang GW, Lu P, Li YJ, Peng RF, Liu YC, Murata Y, Komatsu K. Solvent-free reactions of C60 with active methylene compounds, either with or without carbon tetrabromide, in the presence of bases under high-speed vibration milling conditions. Org Biomol Chem, 2004, 2: 1698–1702

    Article  CAS  Google Scholar 

  55. Li FB, Liu TX, Wang GW. Synthesis of fullerooxazoles: Novel reactions of [60]fullerene with nitriles promoted by ferric perchlorate. J Org Chem, 2008, 73: 6417–6420

    Article  CAS  Google Scholar 

  56. Averdung J, Mattay J, Jacobi D, Abraham W. Addition of photochemically generated acylnitrenes to C60: Synthesis of fulleroaziridines and thermal rearrangement to fullerooxazoles. Tetrahedron, 1995, 51: 2543–2552

    Article  CAS  Google Scholar 

  57. Banks MR, Cadogan JIG, Gosney I, Hodgson PKG, Langridge-Smith PRR, Rankin DWH. Bis-functionalisation of C60 via thermal rearrangement of an isolable fulleroaziridine bearing a ’solubilising’ supermesityl ester moiety. J Chem Soc Chem Commun, 1994, 1365–1366

  58. Banks MR, Cadogan JIG, Gosney I, Hodgson PKG, Langridge-Smith PRR, Millar JRA, Taylor AT. Chemical transformations on the surface of [60]fullerene: Synthesis of [60]fullereno[1′,2′:4,5] oxazolidin-2-one. Tetrahedron Lett, 1994, 35: 9067–9070

    Article  CAS  Google Scholar 

  59. Kukushkin Vyu, Pombeiro AJL. Additions to metal-activated organonitriles. Chem Rev, 2002, 102: 1771–1802

    Article  CAS  Google Scholar 

  60. Li FB, Liu TX, You X, Wang GW. A facile access to [60]fullerene-fused 1,3-dioxolanes: Reaction of [60]fullerene with aldehydes/ketones promoted by ferric perchlorate. Org Lett, 2010, 12: 3258–3261

    Article  CAS  Google Scholar 

  61. Elemes Y, Silverman SK, Sheu CM, Kao M, Foote CS, Alvarez MM, Whetten RL. Reaction of C60 with dimethyldioxirane: Formation of an epoxide and a 1,3-dioxolane derivative. Angew Chem Int Ed Engl, 1992, 31: 351–353

    Article  Google Scholar 

  62. Yoshida M, Morinaga Y, Iyoda M, Kikuchi K, Ikemodo I, Achiba Y. Reaction of C60 with diacyl peroxides containing perfluoroalkyl groups: The first example of electron transfer reaction via C60 in solution. Tetrahedron Lett, 1993, 34: 7629–7632

    Article  CAS  Google Scholar 

  63. Wang GW, Shu LH, Wu SH, Wu HM, Lao XF. Reaction of sodium alkoxides with [60]fullerene: Formation of a 1,3-dioxolane derivative and involvement of O2 in a nucleophilic addition reaction of C60. J Chem Soc Chem Commun, 1995, 1071–1072

  64. Shigemitsu Y, Kaneko M, Tajima Y, Takeuchi K. Efficient acetalization of epoxy rings on a fullerene cage. Chem Lett, 2004, 33: 1604–1605

    Article  CAS  Google Scholar 

  65. Troshin PA, Peregudov AS, Lyubovskaya RN. Reaction of [60]fullerene with CF3COOHal affords an unusual 1,3-dioxolano-[60]fullerene. Tetrahedron Lett, 2006, 47: 2969–2972

    Article  CAS  Google Scholar 

  66. Yang X, Huang S, Jia Z, Xiao Z, Jiang Z, Zhang Q, Gan L, Zheng B, Yuan G, Zhang S. Reactivity of fullerene epoxide: Preparation of fullerene-fused thiirane, tetrahydrothiazolidin-2-one, and 1,3-diox-olane. J Org Chem, 2008, 73: 2518–2526

    Article  CAS  Google Scholar 

  67. Li FB, You X, Liu TX, Wang GW. Fullerenyl boronic esters: Ferric perchlorate-mediated synthesis and functionalization. Org Lett, 2012, 14: 1800–1803

    Article  CAS  Google Scholar 

  68. Yan J, Springsteen G, Deeter S, Wang B. The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols — It is not as simple as it appears. Tetrahedron, 2004, 60: 11205–11209

    Article  CAS  Google Scholar 

  69. Mori S, Nambo M, Chi LC, Bouffard J, Itami K. A bench-stable Pd catalyst for the hydroarylation of fullerene with boronic acids. Org Lett, 2008, 10: 4609–4612

    Article  CAS  Google Scholar 

  70. Nambo M, Noyori R, Itami K. Rh-catalyzed arylation and alkenylation of C60 using organoboron compounds. J Am Chem Soc, 2007, 129: 8080–8081

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuanWu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, F., Wang, G. Ferric perchlorate-mediated radical reactions of [60]fullerene. Sci. China Chem. 55, 2009–2017 (2012). https://doi.org/10.1007/s11426-012-4714-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4714-7

Keywords

Navigation