Skip to main content
Log in

Computational mechanistic studies of acceptorless dehydrogenation reactions catalyzed by transition metal complexes

  • Reviews
  • Progress of Projects Supported by NSFC Special Topic Physical Organic Chemistry in China
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Acceptorless dehydrogenation (AD) that uses non-toxic reagents and produces no waste is a type of catalytic reactions toward green chemistry. Acceptorless alcohol dehydrogenation (AAD) can serve as a key step in constructing new bonds such as C-C and C-N bonds in which alcohols need to be activated into more reactive ketones or aldehydes. AD reactions also can be utilized for hydrogen production from biomass or its fermentation products (mainly alcohols). Reversible hydrogenation/dehydrogenation with hydrogen uptake/release is crucial to realization of the potential organic hydride hydrogen storage. In this article, we review the recent computational mechanistic studies of the AD reactions catalyzed by various transition metal complexes as well as the experimental developments. These reactions include acceptorless alcohol dehydrogenations, reversible dehydrogenation/hydrogenation of nitrogen heterocycles, dehydrogenative coupling reactions of alcohols and amines to construct C-N bonds, and dehydrogenative coupling reactions of alcohols and unsaturated substrates to form C-C bonds. For the catalysts possessing metal-ligand bifunctional active sites (such as 28, 45, 86, 87, and 106 in the paper), the dehydrogenations prefer the “bifunctional double hydrogen transfer” mechanism rather than the generally accepted β-H elimination mechanism. However, methanol dehydrogenation involved in the C-C coupling reaction of methanol and allene, catalyzed by the iridium complex 121, takes place via the β-H elimination mechanism, because the Lewis basicity of either the π-allyl moiety or the carboxyl group of the ligand is too weak to exert high Lewis basic reactivity. Unveiling the catalytic mechanisms of AD reactions could help to develop new catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anastas PT, Warner JC. Green Chemistry: Theory and Practice. Oxford University Press: Oxford, England; New York, 1998

    Google Scholar 

  2. Friedrich A, Schneider S. Acceptorless dehydrogenation of alcohols: Perspectives for synthesis and H2 storage. Chemcatchem, 2009, 1: 72–73

    Article  CAS  Google Scholar 

  3. Johnson TC, Morris DJ, Wills M. Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem Soc Rev, 2010, 39: 81–88

    Article  CAS  Google Scholar 

  4. Dobereiner GE, Crabtree RH. Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem Rev, 2010, 110: 681–703

    Article  CAS  Google Scholar 

  5. Nath K, Das D. Hydrogen from biomass. Curr Sci, 2003, 85: 265–271

    CAS  Google Scholar 

  6. Navarro RM, Pena MA, Fierro JLG. Hydrogen production reactions from carbon feedstocks: Fossils fuels and biomass. Chem Rev, 2007, 107: 3952–3991

    Article  CAS  Google Scholar 

  7. de la Piscina PR, Homs N. Use of biofuels to produce hydrogen (reformation processes). Chem Soc Rev, 2008, 37: 2459–2467

    Article  Google Scholar 

  8. Balat H, Kirtay E. Hydrogen from biomass — Present scenario and future prospects. Int J Hydrogen Energy, 2010, 35: 7416–7426

    Article  CAS  Google Scholar 

  9. Orimo S-i, Nakamori Y, Eliseo JR, Züttel A, Jensen CM. Complex hydrides for hydrogen storage. Chem Rev, 2007, 107: 4111–4132

    Article  CAS  Google Scholar 

  10. Crabtree RH. Hydrogen storage in liquid organic heterocycles. Energy Environ Sci, 2008, 1: 134–138

    Article  CAS  Google Scholar 

  11. Alcaraz G, Grellier M, Sabo-Etienne S. Bis σ-bond dihydrogen and borane ruthenium complexes: Bonding nature, catalytic applications, and reversible hydrogen release. Acc Chem Res, 2009, 42: 1640–1649

    Article  CAS  Google Scholar 

  12. Eberle U, Felderhoff M, Schüth F. Chemical and physical solutions for hydrogen storage. Angew Chem Int Ed, 2009, 48: 6608–6630

    Article  CAS  Google Scholar 

  13. Jessop P. Reactions with a reverse gear. Nature, 2009, 1: 350–351

    CAS  Google Scholar 

  14. Markó IE, Giles PR, Tsukazaki M, Brown SM, Urch CJ. Copper-catalyzed oxidation of alcohols to aldehydes and ketones: An efficient, aerobic alternative. Science, 1996, 274: 2044–2046

    Article  Google Scholar 

  15. Hayashi M, Kawabata H. Environmentally benign oxidation of alcohols using transition metal catalysts. J Synth Org Chem Jpn, 2002, 60: 137–144

    Article  CAS  Google Scholar 

  16. Sheldon RA, Arends I, Ten Brink G-J, Dijksman A. Green, catalytic oxidations of alcohols. Acc Chem Res, 2002, 35: 774–781

    Article  CAS  Google Scholar 

  17. Sigman MS, Jensen DR. Ligand-modulated palladium-catalyzed aerobic alcohol oxidations. Acc Chem Res, 2006, 39: 221–229

    Article  CAS  Google Scholar 

  18. Gligorich KM, Sigman MS. Recent advancements and challenges of palladium(II)-catalyzed oxidation reactions with molecular oxygen as the sole oxidant. Chem Commun, 2009, 3854–3867

  19. Noyori R, Aoki M, Sato K. Green oxidation with aqueous hydrogen peroxide. Chem Commun, 2003, 1977–1986

  20. Gharah N, Chakraborty S, Mukherjee AK, Bhattacharyya R. Oxoperoxo molybdenum(VI)- and tungsten(VI) complexes with 1-(2′-hydroxyphenyl) ethanone oxime: Synthesis, structure and catalytic uses in the oxidation of olefins, alcohols, sulfides and amines using H2O2 as a terminal oxidant. Inorg Chim Acta, 2009, 362: 1089–1100

    Article  CAS  Google Scholar 

  21. Almeida MLS, Beller M, Wang G-Z, Bäckvall JE. Ruthenium(II)-catalyzed oppenauer-type oxidation of secondary alcohols. Chem Eur J, 1996, 2: 1533–1536

    Article  CAS  Google Scholar 

  22. Hanasaka F, Fujita K, Yamaguchi R. Synthesis of new cationic Cp*Ir N-heterocyclic carbene complexes and their high catalytic activities in the oppenauer-type oxidation of primary and secondary alcohols. Organometallics, 2005, 24: 3422–3433

    Article  CAS  Google Scholar 

  23. Dobson A, Robinson SD. Complexes of platinum metals. 7. Homogeneous ruthenium and osmium catalysts for dehydrogenation of primary and secondary alcohols. Inorg Chem, 1977, 16: 137–142

    CAS  Google Scholar 

  24. Ligthart GBWL, Meijer RH, Donners MPJ, Meuldijk J, Vekemans JAJM, Hulshof LA. Highly sustainable catalytic dehydrogenation of alcohols with evolution of hydrogen gas. Tetrahedron Lett, 2003, 44: 1507–1509

    Article  CAS  Google Scholar 

  25. Morton D, Cole-Hamilton DJ. Rapid thermal hydrogen-production from alcohols catalyzed by Rh(2,2′-bipyridyl)2Cl. J Chem Soc: Chem Commun, 1987, 248–249

  26. Morton D, Cole-Hamilton DJ. Molecular-hydrogen complexes in catalysis — Highly efficient hydrogen-production from alcoholic substrates catalyzed by ruthenium complexes. J Chem Soc Chem Commun, 1988, 1154–1156

  27. Morton D, Colehamilton DJ, Utuk ID, Panequesosa M, Lopezpoveda M. Hydrogen-production from ethanol catalyzed by group-8 metal-complexes. J Chem Soc Dalton Trans, 1989, 489–495

  28. Adair GRA, Williams JMJ. Oxidant-free oxidation: Ruthenium catalysed dehydrogenation of alcohols. Tetrahedron Lett, 2005, 46: 8233–8235

    Article  CAS  Google Scholar 

  29. Junge H, Beller M. Ruthenium-catalyzed generation of hydrogen from iso-propanol. Tetrahedron Lett, 2005, 46: 1031–1034

    Article  CAS  Google Scholar 

  30. Junge H, Loges B, Beller M. Novel improved ruthenium catalysts for the generation of hydrogen from alcohols. Chem Commun, 2007, 522–524

  31. Filho RCDM, de Moura EM, de Souza AA, Rocha WR. Methanol dehydrogenation promoted by a heterobimetallic Ru(II)-Sn(II) complex as catalyst: A density functional study. Theochem J Mol Struct, 2007, 816: 77–84

    Article  Google Scholar 

  32. Robles-Dutenhefner PA, Moura EM, Gama GJ, Siebald HGL, Gusevskaya EV. Synthesis of methyl acetate from methanol catalyzed by (η5-C5H5)(phosphine)2RuX and (η5-C5H5)(phosphine)2Ru(SnX3) (X = F, Cl, Br): Ligand effect. J Mol Catal A Chem, 2000, 164: 39–47

    Article  CAS  Google Scholar 

  33. Sieffert N, Bühl M. Hydrogen generation from alcohols catalyzed by ruthenium triphenylphosphine complexes: Multiple reaction pathways. J Am Chem Soc, 2010, 132: 8056–8070

    Article  CAS  Google Scholar 

  34. Johansson AJ, Zuidema E, Bolm C. On the mechanism of ruthenium-catalyzed formation of hydrogen from alcohols: A DFT study. Chem Eur J, 2010, 16: 13487–13499

    Article  CAS  Google Scholar 

  35. Fujita K, Tanino N, Yamaguchi R. Ligand-promoted dehydrogenation of alcohols catalyzed by Cp*Ir complexes. A new catalytic system for oxidant-free oxidation of alcohols. Org Lett, 2007, 9: 109–111

    CAS  Google Scholar 

  36. Li H, Lu G, Jiang J, Huang F, Wang Z-X. Computational mechanistic study on Cp*Ir complex-mediated acceptorless alcohol dehydrogenation: Bifunctional hydrogen transfer vs β-H elimination. Organometallics, 2011, 30: 2349–2363

    Article  CAS  Google Scholar 

  37. Royer AM, Rauchfuss TB, Gray DL. Organoiridium pyridonates and their role in the dehydrogenation of alcohols. Organometallics, 2010, 29: 6763–6768

    Article  CAS  Google Scholar 

  38. Musa S, Shaposhnikov I, Cohen S, Gelman D. Ligand-metal cooperation in PCP pincer complexes: Rational design and catalytic activity in acceptorless dehydrogenation of alcohols. Angew Chem Int Ed, 2011, 50: 3533–3537

    Article  CAS  Google Scholar 

  39. Gu XQ, Chen W, Morales-Morales D, Jensen CM. Dehydrogenation of secondary amines to imines catalyzed by an iridium PCP pincer complex: Initial aliphatic or direct amino dehydrogenation? J Mol Catal A: Chem, 2002, 189: 119–124

    Article  CAS  Google Scholar 

  40. Zhang XW, Fried A, Knapp S, Goldman AS. Novel synthesis of enamines by iridium-catalyzed dehydrogenation of tertiary amines. Chem Commun, 2003, 2060–2061

  41. Yi CS, Lee DW. Efficient dehydrogenation of amines and carbonyl compounds catalyzed by a tetranuclear ruthenium-mu-oxo-muhydroxo-hydride complex. Organometallics, 2009, 28: 947–949

    Article  CAS  Google Scholar 

  42. Hateley MJ, Schichl DA, Kreuzfeld HJ, Beller M. Rhodium-catalysed racemisation of N-acyl α-amino acids. Tetrahedron Lett, 2000, 41: 3821–3824

    Article  CAS  Google Scholar 

  43. Hateley MJ, Schichl DA, Fischer C, Beller M. An improved procedure for the mild racemization of N-acyl α-amino acids. Synlett, 2001, 25–28

  44. Pamies O, Ell AH, Samec JSM, Hermanns N, Backvall JE. An efficient and mild ruthenium-catalyzed racemization of amines: Application to the synthesis of enantiomerically pure amines. Tetrahedron Lett, 2002, 43: 4699–4702

    Article  CAS  Google Scholar 

  45. Yamaguchi R, Ikeda C, Takahashi Y, Fujita K. Homogeneous catalytic system for reversible dehydrogenation-hydrogenation reactions of nitrogen heterocycles with reversible interconversion of catalytic species. J Am Chem Soc, 2009, 131: 8410–8412

    Article  CAS  Google Scholar 

  46. Li H, Jiang J, Lu G, Huang F, Wang Z-X. On the “Reverse gear” mechanism of the reversible dehydrogenation/hydrogenation of a nitrogen heterocycle catalyzed by a Cp*Ir complex: A computational study. Organometallics, 2011, 30: 3131–3141

    Article  CAS  Google Scholar 

  47. Stephan DW. “Frustrated lewis pairs”: A concept for new reactivity and catalysis. Org Biomol Chem, 2008, 6: 1535–1539

    Article  CAS  Google Scholar 

  48. Stephan DW. Frustrated lewis pairs: A new strategy to small molecule activation and hydrogenation catalysis. Dalton Transactions, 2009, 3129–3136

  49. Stephan DW, Erker G. Frustrated Lewis Pairs: Metal-free hydrogen activation and more. Angew Chem Int Ed, 2010, 49: 46–76

    Article  CAS  Google Scholar 

  50. Zhang X-B, Zhao X. A theoretical study of the mechanism for the homogeneous catalytic reversible dehydrogenation-hydrogenation of nitrogen heterocycles. Phys Chem Chem Phys, 2011, 13: 3997–4004

    Article  CAS  Google Scholar 

  51. Fujita K, Li ZZ, Ozeki N, Yamaguchi R. N-alkylation of amines with alcohols catalyzed by a Cp*Ir complex. Tetrahedron Lett, 2003, 44: 2687–2690

    Article  CAS  Google Scholar 

  52. da Costa AP, Viciano M, Sanau M, Merino S, Tejeda J, Peris E, Royo B. First Cp*-functionalized N-heterocyclic carbene and its coordination to iridium. Study of the catalytic properties. Organome-tallics, 2008, 27: 1305–1309

    Google Scholar 

  53. Prades A, Corberan R, Poyatos M, Peris E. IrCl2Cp*(NHC) complexes as highly versatile efficient catalysts for the cross-coupling of alcohols and amines. Chem Eur J, 2008, 14: 11474–11479

    Article  CAS  Google Scholar 

  54. Gnanamgari D, Sauer ELO, Schley ND, Butler C, Incarvito CD, Crabtree RH. Iridium and ruthenium complexes with chelating N-heterocyclic carbenes: Efficient catalysts for transfer hydrogenation, β-alkylation of alcohols, and N-alkylation of amines. Organometallics, 2009, 28: 321–325

    Article  CAS  Google Scholar 

  55. Balcells D, Nova A, Clot E, Gnanamgari D, Crabtree RH, Eisenstein O. Mechanism of homogeneous iridium-catalyzed alkylation of amines with alcohols from a DFT study. Organometallics, 2008, 27: 2529–2535

    Article  CAS  Google Scholar 

  56. Fristrup P, Tursky M, Madsen R. Mechanistic investigation of the iridium-catalysed alkylation of amines with alcohols. Org Biomol Chem, 2012, 10: 2569–2577

    Article  CAS  Google Scholar 

  57. Murahashi S, Kondo K, Hakata T. Ruthenium catalyzed synthesis of secondary or tertiary-amines from amines and alcohols. Tetrahedron Lett, 1982, 23: 229–232

    Article  CAS  Google Scholar 

  58. Watanabe Y, Tsuji Y, Ohsugi Y. The ruthenium catalyzed N-alkylation and N-heterocyclization of aniline using alcohols and aldehydes. Tetrahedron Lett, 1981, 22: 2667–2670

    Article  CAS  Google Scholar 

  59. Watanabe Y, Morisaki Y, Kondo T, Mitsudo T. Ruthenium complex-controlled catalytic N-mono- or N,N-dialkylation of heteroaromatic amines with alcohols. J Org Chem, 1996, 61: 4214–4218

    Article  CAS  Google Scholar 

  60. Naskar S, Bhattacharjee M. Selective N-monoalkylation of anilines catalyzed by a cationic ruthenium(II) compound. Tetrahedron Lett, 2007, 48: 3367–3370

    Article  CAS  Google Scholar 

  61. Del Zotto A, Baratta W, Sandri M, Verardo G, Rigo P. Cyclopentadienyl Ru-II complexes as highly efficient catalysts for the N-methylation of alkylamines by methanol. Eur J Inorg Chem, 2004, 524–529

  62. Abbenhuis RATM, Boersma J, van Koten G. Ruthenium-complex-catalyzed N-(cyclo)alkylation of aromatic amines with diols. Selective synthesis of N-(ω-hydroxyalkyl)anilines of type PhNH(CH2)(n)OH and of some bioactive arylpiperazines. J Org Chem, 1998, 63: 4282–4290

    Article  CAS  Google Scholar 

  63. Hamid MHSA, Williams JMJ. Ruthenium catalysed N-alkylation of amines with alcohols. Chem Commun, 2007, 725–727

  64. Tillack A, Hollmann D, Michalik D, Beller M. A novel ruthenium-catalyzed amination of primary and secondary alcohols. Tetrahedron Lett, 2006, 47: 8881–8885

    Article  CAS  Google Scholar 

  65. Gunanathan C, Milstein D. Selective synthesis of primary amines directly from alcohols and ammonia. Angew Chem Int Ed, 2008, 47: 8661–8664

    Article  CAS  Google Scholar 

  66. Gunanathan C, Ben-David Y, Milstein D. Direct synthesis of amides from alcohols and amines with liberation of H2. Science, 2007, 317: 790–792

    Article  CAS  Google Scholar 

  67. Nordstrøm LU, Vogt H, Madsen R. Amide synthesis from alcohols and amines by the extrusion of dihydrogen. J Am Chem Soc, 2008, 130: 17672–17673

    Article  Google Scholar 

  68. Ghosh SC, Muthaiah S, Zhang Y, Xu X, Hong SH. Direct amide synthesis from alcohols and amines by phosphine-free ruthenium catalyst systems. Adv Synth Catal, 2009, 351: 2643–2649

    Article  CAS  Google Scholar 

  69. Shimizu K, Ohshima K, Satsuma A. Direct dehydrogenative amide synthesis from alcohols and amines catalyzed by gamma-alumina supported silver cluster. Chem Eur J, 2009, 15: 9977–9980

    Article  CAS  Google Scholar 

  70. Watson AJA, Maxwell AC, Williams JMJ. Ruthenium-catalyzed oxidation of alcohols into amides. Org Lett, 2009, 11: 2667–2670

    Article  CAS  Google Scholar 

  71. Zweifel T, Naubron J-V, Grützmacher H. Catalyzed dehydrogenative coupling of primary alcohols with water, methanol, or amines. Angew Chem Int Ed, 2009, 48: 559–563

    Article  CAS  Google Scholar 

  72. Dam JH, Osztrovszky G, Nordstrom LU, Madsen R. Amide synthesis from alcohols and amines catalyzed by ruthenium N-heterocyclic carbene complexes. Chem Eur J, 2010, 16: 6820–6827

    Article  CAS  Google Scholar 

  73. Muthaiah S, Ghosh SC, Jee J-E, Chen C, Zhang J, Hong SH. Direct amide synthesis from either alcohols or aldehydes with amines: Activity of Ru(II) hydride and Ru(0) complexes. J Org Chem, 2010, 75: 3002–3006

    Article  CAS  Google Scholar 

  74. Zhang Y, Chen C, Ghosh SC, Li YX, Hong SH. Well-defined N-heterocyclic carbene based ruthenium catalysts for direct amide synthesis from alcohols and amines. Organometallics, 2010, 29: 1374–1378

    Article  CAS  Google Scholar 

  75. Gnanaprakasam B, Zhang J, Milstein D. Direct synthesis of imines from alcohols and amines with liberation of H2. Angew Chem Int Ed, 2010, 49: 1468–1471

    Article  CAS  Google Scholar 

  76. Ben-Ari E, Leitus G, Shimon LJW, Milstein D. Metal-ligand cooperation in C-H and H2 activation by an electron-rich PNPIr(I) system: Facile ligand dearomatization-aromatization as key steps. J Am Chem Soc, 2006, 128: 15390–15391

    Article  CAS  Google Scholar 

  77. Kohl SW, Weiner L, Schwartsburd L, Konstantinovski L, Shimon LJW, Ben-David Y, Iron MA, Milstein D. Consecutive thermal H2 and light-induced O2 evolution from water promoted by a metal complex. Science, 2009, 324: 74–77

    Article  CAS  Google Scholar 

  78. Gunanathan C, Gnanaprakasam B, Iron MA, Shimon LJW, Milstein D. “Long-range” metal-ligand cooperation in H2 activation and am monia-promoted hydride transfer with a ruthenium-acridine pincer complex. J Am Chem Soc, 2010, 132: 14763–14765

    Article  CAS  Google Scholar 

  79. Khaskin E, Iron MA, Shimon LJW, Zhang J, Milstein D. N-H activation of amines and ammonia by Ru via metal-ligand cooperation. J Am Chem Soc, 2010, 132: 8542–8543

    Article  CAS  Google Scholar 

  80. Lu G, Li H, Zhao L, Huang F, Schleyer PvR, Wang Z-X. Designing metal-free catalysts by mimicking transition-metal pincer templates. Chem Eur J, 2011, 17: 2038–2043

    Article  CAS  Google Scholar 

  81. Li H, Wen M, Lu G, Wang Z-X. Catalytic metal-free intramolecular hydroaminations of non-activated aminoalkenes: A computational exploration. Dalton Transactions, 2012, 41, 909–910

    Google Scholar 

  82. Li H, Wang X, Huang F, Lu G, Jiang J, Wang Z-X. Computational study on the catalytic role of pincer ruthenium(II)-PNN complex in directly synthesizing amide from alcohol and amine: The origin of selectivity of amide over ester and imine. Organometallics, 2011, 30: 5233–5247

    Article  CAS  Google Scholar 

  83. Zweifel T, Naubron J-V, Büttner T, Ott T, Grützmacher H. Ethanol as hydrogen donor: Highly efficient transfer hydrogenations with rhodium(I) amides. Angew Chem Int Ed, 2008, 47: 3245–3249

    Article  CAS  Google Scholar 

  84. Nova A, Balcells D, Schley ND, Dobereiner GE, Crabtree RH, Eisenstein O. An experimental-theoretical study of the factors that affect the switch between ruthenium-catalyzed dehydrogenative amide formation versus amine alkylation. Organometallics, 2010, 29: 6548–6558

    Article  CAS  Google Scholar 

  85. Zeng G, Li S. Insights into dehydrogenative coupling of alcohols and amines catalyzed by a (PNN)-Ru(II) hydride complex: Unusual metal-ligand cooperation. Inorg Chem, 2011, 50: 10572–10580

    Article  CAS  Google Scholar 

  86. Guillena G, Ramon DJ, Yus M. Alcohols as electrophiles in C-C bond-forming reactions: The hydrogen autotransfer process. Angew Chem Int Ed, 2007, 46: 2358–2364

    Article  CAS  Google Scholar 

  87. Bower JF, Kim IS, Patman RL, Krische MJ. Catalytic carbonyl addition through transfer hydrogenation: A departure from preformed organometallic reagents. Angew Chem Int Ed, 2009, 48: 34–46

    Article  CAS  Google Scholar 

  88. Bower JF, Skucas E, Patman RL, Krische MJ. Catalytic C-C coupling via transfer hydrogenation: Reverse prenylation, crotylation, and allylation from the alcohol or aldehyde oxidation level. J Am Chem Soc, 2007, 129: 15134–15135

    Article  CAS  Google Scholar 

  89. Han SB, Kim IS, Han H, Krische MJ. Enantioselective carbonyl reverse prenylation from the alcohol or aldehyde oxidation level employing 1,1-dimethylallene as the prenyl donor. J Am Chem Soc, 2009, 131: 6916–6917

    Article  CAS  Google Scholar 

  90. Zbieg JR, McInturff EL, Krische MJ. Allenamide hydro-hydroxy-alkylation: 1,2-Amino alcohols via ruthenium-catalyzed carbonyl anti-aminoallylation. Org Lett, 2010, 12: 2514–2516

    Article  CAS  Google Scholar 

  91. Zbieg JR, McInturff EL, Leung JC, Krische MJ. Amplification of anti-diastereoselectivity via curtin-hammett effects in ruthenium-catalyzed hydrohydroxyalkylation of 1,1-disubstituted allenes: Diastereoselective formation of all-carbon quaternary centers. J Am Chem Soc, 2011, 133: 1141–1144

    Article  CAS  Google Scholar 

  92. Bower JF, Patman RL, Krische MJ. Iridium-catalyzed C-C coupling via transfer hydrogenation: Carbonyl addition from the alcohol or aldehyde oxidation level employing 1,3-cyclohexadiene. Org Lett, 2008, 10: 1033–1035

    Article  CAS  Google Scholar 

  93. Shibahara F, Bower JF, Krische MJ. Diene hydroacylation from the alcohol or aldehyde oxidation level via ruthenium-catalyzed C-C bond-forming transfer hydrogenation: Synthesis of β,Γ-unsaturated ketones. J Am Chem Soc, 2008, 130: 14120–14122

    Article  CAS  Google Scholar 

  94. Shibahara F, Bower JF, Krische MJ. Ruthenium-catalyzed C-C bond forming transfer hydrogenation: Carbonyl allylation from the alcohol or aldehyde oxidation level employing acyclic 1,3-dienes as surrogates to preformed allyl metal reagents. J Am Chem Soc, 2008, 130: 6338–6339

    Article  CAS  Google Scholar 

  95. Han H, Krische MJ. Direct ruthenium-catalyzed C-C coupling of ethanol: Diene hydro-hydroxyethylation to form all-carbon quaternary centers. Org Lett, 2010, 12: 2844–2846

    Article  CAS  Google Scholar 

  96. Zbieg JR, Fukuzumi T, Krische MJ. Iridium-catalyzed hydrohydroxyalkylation of butadiene: Carbonyl crotylation. Adv Synth Catal, 2010, 352: 2416–2420

    Article  CAS  Google Scholar 

  97. Zbieg JR, Moran J, Krische MJ. Diastereo- and enantioselective ruthenium-catalyzed hydrohydroxyalkylation of 2-silyl-butadienes: Carbonyl syn-crotylation from the alcohol oxidation level. J Am Chem Soc, 2011, 133: 10582–10586

    Article  CAS  Google Scholar 

  98. Kim IS, Ngai M-Y, Krische MJ. Enantioselective iridium-catalyzed carbonyl allylation from the alcohol or aldehyde oxidation level via transfer hydrogenative coupling of allyl acetate: Departure from chirally modified allyl metal reagents in carbonyl addition. J Am Chem Soc, 2008, 130: 14891–14899

    Article  CAS  Google Scholar 

  99. Kim IS, Ngai M-Y, Krische MJ. Enantioselective iridium-catalyzed carbonyl allylation from the alcohol or aldehyde oxidation level using allyl acetate as an allyl metal surrogate. J Am Chem Soc, 2008, 130: 6340–6341

    Article  CAS  Google Scholar 

  100. Kim IS, Han SB, Krische MJ. Anti-diastereo- and enantioselective carbonyl crotylation from the alcohol or aldehyde oxidation level employing a cyclometallated iridium catalyst: Alpha-methyl allyl acetate as a surrogate to preformed crotylmetal reagents. J Am Chem Soc, 2009, 131: 2514–2520

    Article  CAS  Google Scholar 

  101. Lu Y, Kim IS, Hassan A, Del Valle DJ, Krische MJ. 1,n-glycols as dialdehyde equivalents in iridium-catalyzed enantioselective carbonyl allylation and iterative two-directional assembly of 1,3-polyols. Angew Chem Int Ed, 2009, 48: 5018–5021

    Article  CAS  Google Scholar 

  102. Patman RL, Williams VM, Bower JF, Krische MJ. Carbonyl propargylation from the alcohol or aldehyde oxidation level employing 1,3-enynes as surrogates to preformed allenylmetal reagents: A ruthenium-catalyzed C-C bond-forming transfer hydrogenation. Angew Chem Int Ed, 2008, 47: 5220–5223

    Article  CAS  Google Scholar 

  103. Patman RL, Chaulagain MR, Williams VM, Krische MJ. Direct vinylation of alcohols or aldehydes employing alkynes as vinyl donors: A ruthenium catalyzed C-C bond-forming transfer hydrogenation. J Am Chem Soc, 2009, 131: 2066–2067

    Article  CAS  Google Scholar 

  104. Moran J, Preetz A, Mesch RA, Krische MJ. Iridium-catalysed direct C-C coupling of methanol and allenes. Nature, 2011, 3: 287–290

    CAS  Google Scholar 

  105. Li H, Wang Z-X. Computational mechanistic study of C-C coupling of methanol and allenes catalyzed by an iridium complex. Organometallics, 2012, 31: 2066–2077

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiXiang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Wang, Z. Computational mechanistic studies of acceptorless dehydrogenation reactions catalyzed by transition metal complexes. Sci. China Chem. 55, 1991–2008 (2012). https://doi.org/10.1007/s11426-012-4713-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4713-8

Keywords

Navigation