Skip to main content
Log in

Theoretical study on formation of thioesters via O-to-S acyl transfer

  • Articles
  • Special Topic Physical Organic Chemistry in China
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Peptide thioester preparation via intramolecular O-to-S acyl transfer is a recently developed method for protein chemical synthesis through Fmoc chemistry. Theoretical calculations have been carried out to study the mechanism for the formation of thioesters via O-to-S acyl transfer. It is found that the O-to-S acyl transfer occurs via an anionic stepwise mechanism in which the cleavage of the C-O bond is the rate-limiting step. The side reaction of hydrolysis also proceeds through an anionic stepwise process, and its rate-limiting step is the attack of the hydroxide ion on the carbonyl carbon. Increase of the chain length between the ester O atom and the S atom can increase the energy barrier of the O-to-S acyl transfer. On the other hand, substituents at the α-position of the ester can reduce the energy barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kent SBH. Total chemical synthesis of proteins. Chem Soc Rev, 2009, 38: 338–351

    Article  CAS  Google Scholar 

  2. Dawson PE, Muir TW, Clark-Lewis I, Kent SBH. Synthesis of proteins by native chemical ligation. Science, 1994, 38: 776–779

    Article  Google Scholar 

  3. Johnson ECB, Kent SBH. Insights into the mechanism and catalysis of the native chemical ligation reaction. J Am Chem Soc, 2006, 128: 6640–6646

    Article  CAS  Google Scholar 

  4. Ingenito R, Bianchi E, Fattori D, Pessi A. Solid phase synthesis of peptide C-terminal thioesters by Fmoc/t-Bu chemistry. J Am Chem Soc, 1999, 121: 11369–11374

    Article  CAS  Google Scholar 

  5. Fang GM, Li YM, Shen F, Huang YC, Li JB, Lin Y, Cui HK, Liu L. Protein chemical synthesis by ligation of peptide hydrazides. Angew Chem Int Ed, 2011, 50: 7645–7649

    Article  CAS  Google Scholar 

  6. Chen G, Wan Q, Tan Z, Kan C, Hua Z, Ranganathan K, Danishefsky, SJ. Development of efficient methods for accomplishing cysteine-free peptide and glycopeptide coupling. Angew Chem, Int Ed, 2007, 46: 7383–7387

    Article  CAS  Google Scholar 

  7. Hojo H, Murasawa Y, Katayama H, Ohira T, Nakaharaa Y, Nakahara Y. Application of a novel thioesterification reaction to the synthesis of chemokine CCL27 by the modified thioester method. Org Biomol Chem, 2008, 6: 1808–1813

    Article  CAS  Google Scholar 

  8. Shen F, Tang S, Liu L. Hexafluoro-2-propanol as a potent cosolvent for chemical ligation of membrane proteins. Sci China Chem 2011, 54: 110–116

    Article  CAS  Google Scholar 

  9. Blanco-Canosa JB, Dawson PE. An efficient Fmoc-SPPS approach for the generation of thioester peptide precursors for use in native chemical ligation, Angew Chem Int Ed, 2008, 47: 6851–6855

    Article  CAS  Google Scholar 

  10. Tsuda S, Shigenaga A, Bando K, Otaka A. N→S acyl-transfer-mediated synthesis of peptide thioesters using anilide derivatives. Org Lett, 2009, 11: 823–826

    Article  CAS  Google Scholar 

  11. Zheng JS, Chang HN, Wang FL, Liu L. Fmoc synthesis of peptide thioesters without post-chain-assembly manipulation. J Am Chem Soc, 2011, 133: 11080–11083

    Article  CAS  Google Scholar 

  12. Sharma RK, Tam JP. Tandem thiol switch synthesis of peptide thioesters via N-S acyl shift on thiazolidine. Org Lett, 2011, 13: 5176–5179

    Article  CAS  Google Scholar 

  13. Fang GM, Cui HK, Zheng JS, Liu L. Chemoselective ligation of peptide phenyl esters with N-terminal cysteines. ChemBioChem, 2010, 11: 1061–1065

    Article  CAS  Google Scholar 

  14. Sharma I, Crich D. Direct Fmoc-chemistry-based solid-phase synthesis of peptidyl thioesters. J Org Chem, 2011, 76: 6518–6524

    Article  CAS  Google Scholar 

  15. Shen F, Zhang ZP, Li JB, Lin Y, Liu L. Hydrazine-sensitive thiol protecting group for peptide and protein chemistry. Org Lett, 2011, 13: 568–571

    Article  CAS  Google Scholar 

  16. Warren JD, Miller JS, Keding SJ, Danishefsky SJ. Toward fully synthetic glycoproteins by ultimately convergent routes: A solution to a long-standing problem. J Am Chem Soc, 2004, 126: 6576–6578

    Article  CAS  Google Scholar 

  17. Zheng JS, Tang S, Guo Y, Chang HN, Liu L. Synthesis of cyclic peptides and cyclic proteins via ligation of peptide hydrazides. ChemBioChem, 2012, 13: 542–546

    Article  CAS  Google Scholar 

  18. Botti P, Manganiello S, Gaertner H. Native chemical ligation through in situ O to S acyl shift. Org Lett, 2004, 6: 4861–4864

    Article  CAS  Google Scholar 

  19. Chen G, Warren JD, Chen JH, Wu B, Wan Q, Danishefsky SJ. Stud ies related to the relative thermodynamic stability of C-terminal peptidyl esters of O-hydroxy thiophenol: emergence of a doable strategy for non-cysteine ligation applicable to the chemical synthesis of glycopeptides. J Am Chem Soc, 2006, 128: 7460–7462

    Article  CAS  Google Scholar 

  20. Zheng JS, Cui HK, Fang GM, Xi WX, Liu L. Chemical protein synthesis by kinetically controlled ligation of peptide O-esters. Chem-BioChem, 2010, 11: 511–515

    CAS  Google Scholar 

  21. Kisangau DP, Hosea KM, Lyaruu HVM, Joseph C, Mbwambo ZH, Masimba PJ, Gwandu CB, Bruno LN, Devkota KP, Sewald N. Peptide dithiodiethanol esters for in situ generation of thioesters for use in native ligation. Tetrahedron Lett, 2007, 48: 2105–2107

    Article  Google Scholar 

  22. Zheng JS, Chang HN, Shi J, Liu L. Chemical synthesis of a cyclotide via intramolecular cyclization of peptide O-esters. Sci China Chem, 2012, 55: 64–69

    Article  CAS  Google Scholar 

  23. Lin M, Kang GY, Guo YA, Yu ZX. Asymmetric Rh(I)-catalyzed intramolecular [3+2] cycloaddition of 1-yne-vinylcyclopropanes for bicyclo[3.3.0] compounds with a chiral quaternary carbon stereocenter and density functional theory study of the origins of enantioselectivity. J Am Chem Soc, 2012, 134: 398–405

    Article  CAS  Google Scholar 

  24. García-Melchor M, Gorelsky SI, Woo TK. Mechanistic analysis of Iridium (III) catalyzed direct C-H arylations: A DFT study. Chem Eur J, 2011, 17: 13847–13853

    Article  Google Scholar 

  25. Yu HZ, Jiang YY, Fu Y, Liu L. Alternative mechanistic explanation for ligand-dependent selectivities in copper-catalyzed N- and O-arylation reactions. J Am Chem Soc, 2010, 132: 18078–18091

    Article  CAS  Google Scholar 

  26. Tam JP, Lu YA. Density functional theory study of the mechanism and origins of stereoselectivity in the asymmetric Simmons-Smith cyclopropanation with charette chiral dioxaborolane ligand. J Am Chem Soc, 2011, 133: 9343–9353

    Article  Google Scholar 

  27. Zhang SL, Fu Y, Shang R, Guo, QX, Liu L. Theoretical analysis of factors controlling Pd-catalyzed decarboxylative coupling of carboxylic acids with olefins. J Am Chem Soc, 2010, 132: 638–646

    Article  CAS  Google Scholar 

  28. Li WY, Qin S, Su ZS, Yang HQ, Hu CW. Theoretical study on the mechanism of Al(salalen)-catalyzed hydrophosphonylation of aldehydes. Organometallics, 2011, 30: 2095–2104

    Article  CAS  Google Scholar 

  29. Li Z, Zhang SL, Fu Y, Guo QX, Liu L. Mechanism of Ni-catalyzed selective C-O bond activation in cross-coupling of aryl esters. J Am Chem Soc, 2009, 131: 8815–8823

    Article  CAS  Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT, 2009

    Google Scholar 

  31. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648

    Article  CAS  Google Scholar 

  32. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  33. Cramer CJ, Truhlar DG, Implicit solvation models: equilibria, structure, spectra, and dynamics. Chem Rev, 1999, 99: 2161–2200

    Article  CAS  Google Scholar 

  34. Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chem Rev, 2005, 105: 2999–3094

    Article  CAS  Google Scholar 

  35. Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B, 2009, 113: 6378–6396

    Article  CAS  Google Scholar 

  36. Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc, 2008, 120: 215–241

    Article  CAS  Google Scholar 

  37. Wang C, Fu Y, Guo QX, Liu L. First-principles prediction of nucleophilicity parameters for π nucleophiles: implications for mechanistic origin of Mayr’s equation. Chem Eur J, 2010, 16: 2586–2598

    Article  CAS  Google Scholar 

  38. Gunaydin H, Houk KN. Molecular dynamics prediction of the mechanism of ester hydrolysis in water. J Am Chem Soc, 2008, 130: 15232–15233

    Article  CAS  Google Scholar 

  39. Yambe S, Fukuda T, Ishii M. Role of hydrogen bonds in acidcatalyzed hydrolyses of esters. Thero Chem Acc, 2011, 130: 429–438

    Article  Google Scholar 

  40. Linderoth L, Fristrup P, Hansen M, Melander F, Madsen R, Andresen TL, Peters GH. Mechanistic study of the sPLA(2)-mediated hydrolysis of a thio-ester Pro anticancer ether lipid. J Am Chem Soc, 2009, 131: 12193–12200

    Article  CAS  Google Scholar 

  41. Liang X, Montoya A, Haynes BS. Molecular dynamics study of acidcatalyzed hydrolysis of dimethyl ether in aqueous solution. J Phy Chem B, 2011, 115: 8199–8206

    Article  CAS  Google Scholar 

  42. Hori K, Ikenaga Y, Arata K, Takahashi T, Kasai K, Noguchi Y, Sumimoto M, Yamamoto H. Theoretical study on the reaction mechanism for the hydrolysis of esters and amides under acidic conditions. Tetrahedron, 2007, 63: 1264–1269

    Article  CAS  Google Scholar 

  43. Zhan CG, Landry DW, Ornstein RL. Theoretical studies of fundamental pathways for alkaline hydrolysis of carboxylic acid esters in gas phase. J Am Chem Soc, 2000, 122: 1522–1530

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Xiang Guo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Guo, QX. Theoretical study on formation of thioesters via O-to-S acyl transfer. Sci. China Chem. 55, 2075–2080 (2012). https://doi.org/10.1007/s11426-012-4711-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4711-x

Keywords

Navigation