Skip to main content
Log in

Role of self-assembly in construction of inorganic nanostructural materials

  • Reviews
  • Progress of Projects Supported by NSFC Special Topic Growth Mechanism of Nanostructures
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Understanding the evolution process and formation mechanism of nanoscale structures is crucial to controllable synthesis of inorganic nanomaterials with well-defined geometries and unique functionalities. In addition to the conventional Ostwald ripening process, oriented aggregation has been recently found to be prevalent in nanocrystal growth. In this new mechanism, primary small nanocrystals firstly spontaneously aggregate in the manner of oriented attachment, and then the large crystalline materials are formed via the process of interparticle recrystallization. Furthermore, controllable fabrication of the ordered nanocrystal solid materials that has shown specific collective properties will promote the application of inorganic nanocrystal in devices. Therefore, investigation of the mechanism of oriented aggregation is essential to controllable synthesis of nanocrystals and ordered nanocrystal solid materials. In this review, we summarize recent advances in the preparation of nanocrystal materials, which are mostly focused on our work about the role of self-assembly in construction of inorganic nanostructural materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chan EM, Mathies RA, Alivisatos AP. Size-controlled growth of CdSe nanocrystals in microfluidic reactors. Nano Lett, 2003, 3: 199–201

    Article  CAS  Google Scholar 

  2. Astruc D, Ornelas C, Ruiz J. Metallocenyl dendrimers and their applications in molecular electronics, sensing, and catalysis. Acc Chem Res, 2008, 41:841–856

    Article  CAS  Google Scholar 

  3. Fendler JH, Meldrum FC. The colloid chemical approach to nano-structured materials. Adv Mater, 1995, 7: 607–632

    Article  CAS  Google Scholar 

  4. Chou SY, Krauss PR, Renstrom PJ. Imprint lithography with 25-nanometer resolution. Science, 1996, 272: 85–87

    Article  CAS  Google Scholar 

  5. Pan ZX, Donthu SK, Wu NQ, Li SY, Dravid VP. Directed fabrication of radially stacked multifunctional oxide heterostructures using soft electron-beam lithography. Small, 2006, 2: 274–280

    Article  CAS  Google Scholar 

  6. Jeong SJ, Xia GD, Kim BH, Shin DO, Kwon SH, Kang SW, Kim SO. Universal block copolymer lithography for metals, semiconductors, ceramics, and polymers. Adv Mater, 2008, 20: 1898–1904

    Article  CAS  Google Scholar 

  7. Huang Y, Duan XF, Lieber CM. Nanowires for integrated multicolor nanophotonics. Small, 2005, 1: 142–147

    Article  CAS  Google Scholar 

  8. Tao AR, Habas S, Yang PD. Shape control of colloidal metal nanocrystals. Small, 2008, 4: 310–325

    Article  CAS  Google Scholar 

  9. Hu S, Wang X. Single-walled MoO3 nanotubes. J Am Chem Soc, 2008, 130: 8126–8127

    Article  CAS  Google Scholar 

  10. Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc, 1993, 115: 8706–8715

    Article  CAS  Google Scholar 

  11. Bowen-Katari JE, Colvin VL, Alivisatos AP. X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. J Phys Chem, 1994, 98: 4109–4117

    Article  Google Scholar 

  12. Peng ZA, Peng XG. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc, 2001, 123: 183–184

    Article  CAS  Google Scholar 

  13. Peng S, Wang C, Xie J, Sun SH. Synthesis and stabilization of monodisperse Fe nanoparticles. J Am Chem Soc, 2006, 128: 10676–10677

    Article  CAS  Google Scholar 

  14. Sun SH, Zeng H. Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc, 2002, 124: 8204–8205

    Article  CAS  Google Scholar 

  15. Sun SH, Murray CB, Weller D, Folks L, Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 2000, 287: 1989–1992

    Article  CAS  Google Scholar 

  16. Sun YG, Gates B, Mayers B, Xia YN. Crystalline silver nanowires by soft solution processing. Nano Lett, 2002, 2: 165–168

    Article  CAS  Google Scholar 

  17. Sun YG, Xia YN. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv Mater, 2002, 14: 833–837

    Article  CAS  Google Scholar 

  18. Sun YG, Xia YN. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298: 2176–2179

    Article  CAS  Google Scholar 

  19. Xia Y, Xiong YJ, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew Chem Int Ed, 2009, 48: 60–103

    Article  CAS  Google Scholar 

  20. Niederberger M. Nonaqueous sol-gel routes to metal oxide nanoparticles. Acc Chem Res, 2007, 40: 793–800

    Article  CAS  Google Scholar 

  21. Duffus C, Camp PJ, Alexander AJ. Spatial control of crystal nucleation in agarose gel. J Am Chem Soc, 2009, 131: 11676–11677

    Article  CAS  Google Scholar 

  22. Talapin DV, Rogach AL, Haase M, Weller H. Evolution of an ensemble of nanoparticles in a colloidal solution: Theoretical study. J Phys Chem B, 2001, 105: 12278–12285

    Article  CAS  Google Scholar 

  23. Chen Y, Johnson E, Peng X. Formation of monodisperse and shape-controlled MnO nanocrystals in non-injection synthesis: Self-focusing via ripening. J Am Chem Soc, 2007, 129: 10937–10947

    Article  CAS  Google Scholar 

  24. Peng ZA, Peng X. Mechanisms of the shape evolution of CdSe nanocrystals. J Am Chem Soc, 2001, 123: 1389–1395

    Article  CAS  Google Scholar 

  25. Peng X, Wickham J, Alivisatos A P. Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J Am Chem Soc, 1998, 120: 5343–5344

    Article  CAS  Google Scholar 

  26. Yang S, Gao L. Controlled synthesis and self-assembly of CeO2 nanocubes. J Am Chem Soc, 2006, 128: 9330–9331

    Article  CAS  Google Scholar 

  27. Sullivan CO, Gunning RD, Sanyal A, Barrett CA, Geaney H, Laffir FR, Ahmed S, Ryan KM. Spontaneous room temperature elongation of CdS and Ag2S nanorods via oriented attachment. J Am Chem Soc, 2009, 131: 12250–12257

    Article  CAS  Google Scholar 

  28. Tang Z, Wang Y, Shanbhag S, Giersig M, Kotov NA. Spontaneous transformation of CdTe nanoparticles into angled Te nanocrystals: From particles and rods to checkmarks, X-marks, and other unusual shapes. J Am Chem Soc, 2006, 128: 6730–6736

    Article  CAS  Google Scholar 

  29. Yu JH, Joo J, Park HM, Baik SI, Kim YW, Kim SC, Hyeon T. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J Am Chem Soc, 2005, 127: 5662–5670

    Article  CAS  Google Scholar 

  30. Huang F, Zhang H, Banfield JF. Two-stage crystal growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Lett, 2003, 3: 373–378

    Article  CAS  Google Scholar 

  31. Banfield JF, Welch SA, Zhang HZ, Ebert TT, Penn RL. Aggregation based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science, 2000, 289: 751–754

    Article  CAS  Google Scholar 

  32. Penn RL, Banfield JF. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania. Geochim Cosmochim Acta, 1999, 63: 1549–1557

    Article  CAS  Google Scholar 

  33. Penn RL, Banfield JF. Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights from nanocrystalline TiO2. Am Mineral, 1998, 83: 1077–1082

    CAS  Google Scholar 

  34. Penn RL, Banfield JF. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science, 1998, 281: 969–971

    Article  CAS  Google Scholar 

  35. Zhang J, Lin Z, Huang F. Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale, 2010, 2: 18–34

    Article  CAS  Google Scholar 

  36. Penn RL, Banfield JF. Formation of rutile nuclei at anatase {112} twin interfaces and the phase transformation in nanocrystalline titania. Am Mineral, 1999, 84: 871–876

    CAS  Google Scholar 

  37. Koh W, Bartnik AC, Wise FW, Murray CB. Synthesis of monodisperse PbSe nanorods: A case for oriented attachment. J Am Chem Soc, 2010, 132: 3909–3913

    Article  CAS  Google Scholar 

  38. Talapin DV, Black CT, Kagan CR, Shevchenko EV, Afzali A, Murray CB. Alignment, electronic properties, doping, and on-chip growth of colloid al PbSe nanowires. J Phys Chem C, 2007, 111: 13244–13249

    Article  CAS  Google Scholar 

  39. Xu X, Zhuang J, Wang X. SnO2 quantum dots and quantum wires: Controllable synthesis, self-assembled 2D architectures, and gas-sensing properties. J Am Chem Soc, 2008, 130: 12527–12535

    Article  CAS  Google Scholar 

  40. Wang Z, Schliehe C, Wang T, Nagaoka Y, Cao YC, Bassett WA, Wu H, Fan H, Weller H. Deviatoric stress driven formation of large single crystal PbS nanosheets from nanoparticles and in situ monitoring of oriented attachment. J Am Chem Soc, 2011, 133: 14484–14487

    Article  CAS  Google Scholar 

  41. Zitoun D, Pinna N, Frolet N, Belin C. Single crystal manganese oxide multipods by oriented attachment. J Am Chem Soc, 2005, 127: 15034–15035

    Article  CAS  Google Scholar 

  42. Lu L, Kobayashi A, Kikkawa Y, Tawa K, Ozaki Y. Oriented attachment-based assembly of dendritic silver nanostructures at room temperature. J Phys Chem B, 2006, 110: 23234–23241

    Article  CAS  Google Scholar 

  43. Penn RL. Kinetics of oriented aggregation. J Phys Chem B, 2004, 108: 12707–12712

    Article  CAS  Google Scholar 

  44. Penn RL, Oskam G, Strathmann TJ, Searson PC, Stone AT, Veblen DR. Epitaxial assembly in aged colloids. J Phys Chem B, 2001, 105: 2177–2182

    Article  CAS  Google Scholar 

  45. Ribeiro C, Lee EJH, Longo E, Leite ER. Oriented attachment mechanism in anisotropic nanocrystals: A “polymerization” approach. ChemPhysChem 2006, 7: 664–670

    Article  CAS  Google Scholar 

  46. Lee EJH, Ribeiro C, Longo E, Leite ER. Oriented attachment: An effective mechanism in the formation of anisotropic nanocrystals. J Phys Chem B, 2005, 109: 20842–20846

    Article  CAS  Google Scholar 

  47. Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev, 2010, 110: 389–458

    Article  CAS  Google Scholar 

  48. Murray CB, Kagan CR, Bawendi MG. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu ReV Mater Sci, 2000, 30: 545–610

    Article  CAS  Google Scholar 

  49. Braun E, Eichen Y, Sivan U, Yoseph GB. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature, 1998, 391: 775–778

    Article  CAS  Google Scholar 

  50. Zhao L, kelly KL, Schatz GC. The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width. J Phys Chem B, 2003, 107: 7343–7350

    Article  CAS  Google Scholar 

  51. Dong A, Chen J, Vora PM, Kikkawa JM, Murray CB. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature, 2010, 466: 474–477

    Article  CAS  Google Scholar 

  52. Urban JJ, Talapin DV, Shevchenko EV, Kagan CR, Murray CB. Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2Te thin films. Nat Mater, 2007, 6: 115–121

    Article  CAS  Google Scholar 

  53. Zeng H, Li J, Liu JP, Wang ZL, Sun S. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature, 2002, 420: 395–398

    Article  CAS  Google Scholar 

  54. Cheon J, Park J, Choi J, Jun Y, Kim S, Kim MG, Kim Y, Kim YJ. Magnetic superlattices and their nanoscale phase transition effects. Proc Natl Acad Sci USA, 2006, 103: 3023–3027

    Article  CAS  Google Scholar 

  55. Shevchenko EV, Talapin DV, Murray CB, O’Brien S. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J Am Chem Soc, 2006, 128: 3620–3637

    Article  CAS  Google Scholar 

  56. Shevchenko EV, Talapin DV, Kotov NA, O’Brien S, Murray CB. Structural diversity in binary nanoparticle superlattices. Nature, 2006, 439: 55–59

    Article  CAS  Google Scholar 

  57. Friedrich H, Gommes CJ, Overgaag K, Meeldijk JD, Evers WH, Nijs B, Boneschanscher MP, Jongh PE, Verkleij AJ, Jong KP, Blaaderen A, Vanmaekelbergh D. Quantitative structural analysis of binary nanocrystal superlattices by electron tomography. Nano Lett, 2009, 9: 2719–2724

    Article  CAS  Google Scholar 

  58. Shevchenko E, Talapin DV, Kornowski A, Wiekhorst F, Kotzler J, Haase M, Rogach A, Weller H. Colloidal crystals of monodisperse FePt nanoparticles grown by a three-layer technique of controlled oversaturation. Adv Mater, 2002, 14: 287–290

    Article  CAS  Google Scholar 

  59. Nagel M, Hickey SG, Fromsdorf A, Kornowski A, Weller HZ. Synthesis of monodisperse PbS nanoparticles and their assembly into highly ordered 3D colloidal crystals. Phys Chem, 2007, 221: 427–437

    CAS  Google Scholar 

  60. Shevchenko EV, Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H. Colloidal synthesis and self-assembly of CoPt3 nanocrystals. J Am Chem Soc, 2002, 124: 11480–11485

    Article  CAS  Google Scholar 

  61. Talapin DV, Shevchenko EV, Kornowski A, Gaponik N, Haase M, Rogach AL, Weller H. A new approach to crystallization of CdSe nanoparticles into ordered three-dimensional superlattices. Adv Mater, 2001, 13: 1868–1871

    Article  CAS  Google Scholar 

  62. Murray CB, Kagan CR, Bawendi MG. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science, 1995, 270: 1335–1338

    Article  CAS  Google Scholar 

  63. Whetten RL, Shafigullin MN, Khoury JT, Schaaff TG, Vezmar I, Alvarez MM, Wilkinson A. Crystal structures of molecular gold nanocrystal arrays. Acc Chem Res, 1999, 32: 397–406

    Article  CAS  Google Scholar 

  64. Henzie J, Grünwald M, Cooper AW, Geissler PL, Yang P. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat Mater, 2012, 11: 131–137

    Article  CAS  Google Scholar 

  65. Talapin DV, Shevchenko EV, Murray CB, Kornowski A, Förster S, Weller H. CdSe and CdSe/CdS nanorod solids. J Am Chem Soc, 2004, 126: 12984–12988

    Article  CAS  Google Scholar 

  66. Wang D, Kang Y, Nguyen VD, Chen J, Küngas R, Wieder NL, Bakhmutsky K, Gorte, RJ, Murray CB. Synthesis and oxygen storage capacity of two-dimensional ceria nanocrystals. Angew Chem Int Ed, 2011, 50: 4378–4381

    Article  CAS  Google Scholar 

  67. Saunders AE, Ghezelbash A, Smilgies DM, Sigman MB, Korgel BA. Columnar self-assembly of colloidal nanodisks. Nano Lett, 2006, 6: 2959–2963

    Article  CAS  Google Scholar 

  68. Shevchenko EV, Talapin DV, Murray CB, O’Brien S. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J Am Chem Soc, 2006, 128: 3620–3637

    Article  CAS  Google Scholar 

  69. Shevchenko EV, Talapin DV, O’Brien S, Murray CB. Polymorphism in AB13 nanoparticle superlattices: An example of semiconductor-metal metamaterials. J Am Chem Soc, 2005, 128: 8741–8747

    Article  CAS  Google Scholar 

  70. Rogach AL, Talapin DV, Shevchenko EV, Kornowski EV, Kornowski A, Haase M, Weller H. Organization of matter on different size scales: Monodisperse nanocrystals and their superstructures. Adv Mater, 2002, 12: 653–664

    CAS  Google Scholar 

  71. Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J. The role of interparticle and external forces in nanoparticle assembly. Nat Mater, 2008, 7: 527–538

    Article  CAS  Google Scholar 

  72. Lalatonne Y, Richardi J, Pileni MP. Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals. Nat Mater, 2004, 3: 121–125

    Article  CAS  Google Scholar 

  73. Aubry N, Singh P, Janjua M, Nudurupati S. Micro- and nanoparticles self-assembly for virtually defect-free, adjustable monolayers. Proc Natl Acad Sci USA, 2008, 105: 3711–3714

    Article  CAS  Google Scholar 

  74. Bodnarchuk MI, Li L, Fok A, Nachtergaele S, Ismagilov RF, Talapin DV. Three-dimensional nanocrystal superlattices grown in nanoliter microfluidic plugs. J Am Chem Soc, 2011, 133: 8956–8960

    Article  CAS  Google Scholar 

  75. Bishop KM, Wilmer CE, Soh S, Grzybowski BA. Nanoscale forces and their uses in self-assembly. Small, 2009, 5: 1600–1630

    Article  CAS  Google Scholar 

  76. Bolhuis PG, Frenkel D, Mau SC, Huse DA. Entropy difference between crystal phases. Nature, 1997, 388: 235–236

    Article  CAS  Google Scholar 

  77. Kalsin AM, Paszewski M, Smoukov SK, Bishop KJM, Grzybowski BA. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science, 2006, 312: 420–424

    Article  CAS  Google Scholar 

  78. Hu J, Odom TW, Lieber CM. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc Chem Res, 1999, 32: 435–445

    Article  CAS  Google Scholar 

  79. Jun Y, Casula MF, Sim JH, Kim SY, Cheon J, Alivisatos AP. Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals. J Am Chem Soc, 2003, 125: 15981–15985

    Article  CAS  Google Scholar 

  80. Patla I, Acharya S, Zeiri L, Israelachvili J, Efrima S, Golan Y. Synthesis, two-dimensional assembly, and surface pressure-induced coalescence of ultranarrow PbS nanowires. Nano Lett, 2007, 7: 1459–1462

    Article  CAS  Google Scholar 

  81. Panda AB, Acharya S, Efrima A. Ultranarrow ZnSe nanorods and nanowires: Structure, spectroscopy, and one-dimensional properties. Adv Mater, 2005, 17: 2471–2474

    Article  CAS  Google Scholar 

  82. Halder A, Ravishankar N. Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv Mater, 2007, 19: 1854–1858

    Article  CAS  Google Scholar 

  83. Tang Z, Kotov NA, Giersig M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science, 2002, 297: 237–240

    Article  CAS  Google Scholar 

  84. Cho KS, Talapin DV, Gaschler W, Murray C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J Am Chem Soc, 127: 7140–7147

  85. Pradhan N, Xu HF, Peng XG. Colloidal CdSe quantum wires by oriented attachment. Nano Lett, 2006, 6: 720–724

    Article  CAS  Google Scholar 

  86. Tang Z, Ozturk B, Wang Y, Kotov NA. Simple preparation strategy and one-dimensional energy transfer in CdTe nanoparticle chains. J Phys Chem B, 2004, 108: 6927–6931

    Article  CAS  Google Scholar 

  87. Korgel BA, Fitzmaurice D. Self-assembly of silver nanocrystals into two dimensional nanowire arrays. Adv Mater, 1998, 10: 661–665

    Article  CAS  Google Scholar 

  88. Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271: 933–937

    Article  CAS  Google Scholar 

  89. Wang ZL. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B, 2000, 104: 1153–1175

    Article  CAS  Google Scholar 

  90. Shim M, Guyot-Sionnest P. Permanent dipole moment and charges in colloidal semiconductor quantum dots. J Chem Phys, 1999, 111: 6955–6964

    Article  CAS  Google Scholar 

  91. Rabani E, Hetenyi B, Berne BJ, Brus LE. Electronic properties of CdSe nanocrystals in the absence and presence of a dielectric medium. J Chem Phys, 1999, 110: 5355–5369

    Article  CAS  Google Scholar 

  92. Huang X, Tang S, Mu X, Dai Y, Chen G, Zhou Z, Ruan F, Yang Z, Zheng N. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nature Nanotech, 2011, 6: 28–32

    Article  CAS  Google Scholar 

  93. Omomo Y, Sasaki T, Wang L, Watanabe M. Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J Am Chem Soc, 2003, 125: 3568–3575

    Article  CAS  Google Scholar 

  94. Sasaki T, Ebina Y, Kitami Y, Watanabe M. Two-dimensional diffraction of molecular nanosheet crystallites of titanium oxide. J Phys Chem B, 2001, 105: 6116–6121

    Article  CAS  Google Scholar 

  95. Arango A, Oertel DC, X Yu, Bawendi MG, Bulovic V. Heterojunction photovoltaics using printed colloidal quantum dots as a photosensitive layer. Nano Lett, 2009, 9: 860–863

    Article  CAS  Google Scholar 

  96. Huo Z, Tsung CK, Huang W, Fardy M, Yan R, Zhang X, Li Y, Yang P. Self-organized ultrathin oxide nanocrystals. Nano Lett, 2009, 9: 1260–1264

    Article  CAS  Google Scholar 

  97. Tang Z, Zhang Z, Wang Y, Glotzer SC, Kotov NA. Self-assembly of CdTe nanocrystals into free-floating sheets. Science, 2006, 314: 274–278

    Article  CAS  Google Scholar 

  98. Zhang Z, Tang Z, Kotov NA, Glotzer SC. Simulations and analysis of self-assembly of CdTe nanoparticles into wires and sheets. Nano Lett, 2007, 7: 1670–1675

    Article  CAS  Google Scholar 

  99. Yaroslavov AA, Sinani VA, Efimova AA, Yaroslavova EG, Rakhnyanskaya AA, Sun K, Ermakov YA, Wicksted JP, Kotov NA. What is the effective charge of TGA-stabilized CdTe nanocolloids. J Am Chem Soc, 2005, 127: 7322–7323

    Article  CAS  Google Scholar 

  100. Israelachvili JN. Intermolecular and Surface Forces: With Applications to Colloidal and Biological Systems. Academic Press, New York, 1985. 296

    Google Scholar 

  101. John BS, Escobedo FA. Phase behavior of colloidal hard tetragonal parallelepipeds (cuboids): A monte carlo simulation study. J Phys ChemB, 2005, 109: 23008–23015

    Article  CAS  Google Scholar 

  102. Zhang X, Zhang ZL, Glotzer SC. Simulation study of dipole-induced self-assembly of nanocubes. J Phys Chem C, 2007, 111: 4132–4137

    Article  CAS  Google Scholar 

  103. Schliehe C, Juarez BH, Pelletier M, Jander S, Greshnykh D, Nagel M, Meyer A, Foerster S, Kornowski A, Klinke C, Weller H. Ultrathin PbS sheets by two-dimensional oriented attachment. Science, 2010, 329: 550–553

    Article  CAS  Google Scholar 

  104. Duan T, Lou W, Wang X, Xue Q. Size-controlled synthesis of orderly organized cube-shaped lead sulfide nanocrystals via a solvothermal single-source precursor method. Colloids Surf A Physicochem Eng Asp, 2007, 310: 86–72

    Article  CAS  Google Scholar 

  105. Capek E, Schwarzhans KE. 207Pb-NMR-untersuchungen an bleiorganylen, Monatsh Chem, 1987, 118: 419–426

    Article  CAS  Google Scholar 

  106. Yarema M, Kovalenko MV, Hesser G, Talapin DV, Heiss W. Highly monodisperse bismuth nanoparticles and their three-dimensional superlattices. J Am Chem Soc, 2010, 132: 15158–15159

    Article  CAS  Google Scholar 

  107. Xia Y, Nguyen TD, Yang M, Lee B, Santos A, Podsiadlo P, Tang Z, Glotzer SC, Kotov NA. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nature Nanotech, 2011, 6: 580–587

    Article  CAS  Google Scholar 

  108. Zhu Z, Meng H, Liu W, Liu X, Gong J, Qiu X, Jiang L, Wang D, Tang Z. Superstructures and SERS properties of gold nanocrystals with different shapes. Angew Chem Int Ed, 2011, 50: 1593–1596

    Article  CAS  Google Scholar 

  109. Wang H, Levin CS, Halas NJ. Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates. J Am Chem Soc, 2005, 127: 14992–14493

    Article  CAS  Google Scholar 

  110. Ko H, Singamaneni S, Tsukruk VV. Nanostructured surfaces and assemblies as SERS media. Small, 2008, 4: 1576–1599

    Article  CAS  Google Scholar 

  111. McLellan JM, Siekkinen A, Chen J, Xia Y. Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes. Chen Phys Lett, 2006, 427: 122–126

    Article  CAS  Google Scholar 

  112. Dieringer JA, Wustholz KL, Masiello DJ, Camden JP, Kleinman SL, Schatz GC, Van Duyne RP. Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule. J Am Chem Soc, 2009, 131: 849–854

    Article  CAS  Google Scholar 

  113. Wustholz KL, Henry AI, McMahon JM, Freeman RG, Valley N, Piotti ME, Natan MJ, Schatz GC, Van Duyne RP. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. J Am Chem Soc, 2010, 132: 10903–10910

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiYong Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, Y., Tang, Z. Role of self-assembly in construction of inorganic nanostructural materials. Sci. China Chem. 55, 2272–2282 (2012). https://doi.org/10.1007/s11426-012-4705-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4705-8

Keywords

Navigation