Skip to main content
Log in

Three-dimensional supramolecular architecture based on 4,4′-methylene-bis(benzenamine) and aromatic carboxylic acid guests: Synthons cooperation, robust motifs and structural diversity

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The two-component solid forms involving 4,4′-methylene-bis(benzenamine) included both salts and co-crystals, while 4,4′-methylene-bis(benzenamine) crystallized exclusively as a salt, in agreement with the differences in the pK a values. Many of the crystal structures displayed either the neutral or the ionic form of the carboxylic acid-amino heterosynthon, and the similarity in crystal structures between the neutral and the ionized molecules makes the visual distinction between a salt and co-crystal dependent on the experimental location of the acidic proton. A variety of supramolecular hydrogen bonded motifs involving interactions between the aza molecules and carboxylic acid groups are observed rather than just the O-H…N/O-H…O motif. The motifs are identical in all the two compounds analyzed showing the robustness of these supramolecular synthons. In all adducts, recognition between the constituents is established through either N-H…O and/or O-H…O/O-H…N pairwise hydrogen bonds. In all adducts, COOH functional groups available on 1 and 2 interact with the N-donor compounds. The COOH moieties in 1 forms only single N-H…O hydrogen bonds, whereas in 2, it forms pairwise O-H…N/N-H…O hydrogen bonds. The supramolecular architectures are elegant and simple, with stacking of networks in 2, but a rather complex network with a threefold interpenetration pattern was found in 1. Thermal stability of these compounds has been investigated by thermogravimetric analysis (TGA) of mass loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rajca A, Rajca S. Asymmetrische synthese chiraler tetraphenylene. Angew Chem Int Ed, 2010, 49: 672–674

    Article  CAS  Google Scholar 

  2. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials. Nature, 2003, 423: 705–714

    Article  CAS  Google Scholar 

  3. Ockwig NW, Delgado-Friedrichs O, O’Keeffe M, Yaghi OM. Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks. Acc Chem Res, 2005, 38: 176–182

    Article  CAS  Google Scholar 

  4. Batten SR, Murray KS. Structure and magnetism of coordination polymers containing dicyanamide and tricyanomethanide. Coord Chem Rev, 2003, 246: 103–130

    Article  CAS  Google Scholar 

  5. Zhong DC, Lu TB. Porous coordination polymers based on three planar rigid ligands. Sci China Chem, 2011, 54: 1395–1406

    Article  CAS  Google Scholar 

  6. Desiraju GR. Chemistry beyond the molecule. Nature, 2001, 412: 397–400

    Article  CAS  Google Scholar 

  7. Yin Z, Zeng YH. Recent advance in porous coordination polymers from the viewpoint of crystalline-state transformation. Sci China Chem, 2012, 54: 1371–1394

    Article  Google Scholar 

  8. Aakeröy CB, Salmon DJ. Building co-crystals with molecular sense and supramolecular sensibility. CrystEngComm, 2005, 7: 439–448

    Article  Google Scholar 

  9. Kennedy S, Beavers CM, Teat SJ, Dalgarno SJ. Pyridine directed assembly of tetra-o-alkyl p-carboxylatocalix[4]arenes. Cryst Growth Des, 2012, 12: 679–687

    Article  CAS  Google Scholar 

  10. Varughese S, Sinha SB, Desiraju GR. Phenylboronic acids in crystal engineering: Utility of the energetically unfavorable syn,syn-conformation in co-crystal design. Sci China Chem, 2011, 54: 1909–1919

    Article  CAS  Google Scholar 

  11. Perumalla SR, Suresh E, Pedireddi VR. Nucleobases in molecular recognition: molecular adducts of adenine and cytosine with COOH functional groups. Angew Chem Int Ed, 2005, 44: 7752–7757

    Article  CAS  Google Scholar 

  12. Prakash MJ, Oliver AG., Sevov SC. Guest-Host frameworks of the anionic metal complex [Fe(ox)3]3− and cationic bipyridinium-based linkers bonded by charge-assisted hydrogen bonds. Cryst Growth Des, 2012, 12: 2684–2690

    Article  CAS  Google Scholar 

  13. Zaworotko MJ. Superstructural diversity in two dimensions: crystal engineering of laminated solids. Chem Commun, 2001, 1: 1–9

    Article  Google Scholar 

  14. Wuest JD. Engineering crystals by the strategy of molecular tectonics. Chem Commun, 2005, 5: 5830–5837

    Article  Google Scholar 

  15. Dunitz JD, Gavezzotti A. Molecular recognition in organic crystals: directed intermolecular bonds or nonlocalized bonding? Angew Chem Int Ed, 2005, 44: 1766–17

    Article  CAS  Google Scholar 

  16. Zaworotko MJ. Molecules to crystals, crystals to molecules … and back again? Cryst Growth Des, 2007, 7: 4–9

    Article  CAS  Google Scholar 

  17. Muñoz MC, Blay G, Fernández I, Pedro JR, Carrasco R, Castellano M, García RR, Cano J. Topological control in the hydrogen bond-directed self-assembly of ortho-, meta-, and para-phenylene-substituted dioxamic acid diethyl esters. CrystEngComm 2010, 12: 2473–2484

    Article  Google Scholar 

  18. Kapildev KA, Pedireddi VR. A rational study of crystal engineering of supramolecular assemblies of 1,2,4,5-benzenetetracarboxylic acid. J Org Chem, 2003, 68: 9177–9185

    Article  Google Scholar 

  19. Das D, Desiraju GR. Packing modes in some mono- and disubstituted phenylpropiolic acids: Repeated occurrence of the rare syn,anti catemer. Chem Asian J, 2006, 1: 231–44

    Article  CAS  Google Scholar 

  20. Wang WH, Xi PH, Su XY, Lan JB, Mao ZH, You JS, Xie RG. Supramolecular assemblies of multifunctional diimidazole and dicarboxylic acids via various hydrogen bonds and X…π (X = π, CH) interactions. Cryst Growth Des, 2007, 7: 741–746

    Article  CAS  Google Scholar 

  21. Gilli P, Bertolasi V, Ferretti V, Gilli G. Evidence for resonance-assisted hydrogen bonding. 4. Covalent nature of the strong homonuclear hydrogen bond. Study of the O-H…O system by crystal structure correlation methods. J Am Chem Soc, 1994, 116: 909–915

    Article  CAS  Google Scholar 

  22. Desiraju GR. Supramolekulare synthone für das kristall-engineering — eine neue organische synthese. Angew Chem Int Ed, 1995, 34: 2311–2327

    Article  CAS  Google Scholar 

  23. Nangia A, Desiraju GR. Supramolecular synthons and pattern recognition. Top Curr Chem, 1998, 198: 57–95

    Article  CAS  Google Scholar 

  24. Du M, Zhang ZH, Guo W, Fu XJ. Multi-Component hydrogen-bonding assembly of a pharmaceutical agent pamoic acid with piperazine or 4,4′-bipyridyl: a channel hydrated salt with multiple-helical motifs vs a bimolecular cocrystal. Cryst Growth Des, 2009, 9: 1655–1657

    Article  CAS  Google Scholar 

  25. Kodama K, Kobayashi Y, Saigo K. Role of the relative molecular length of the components in ternary inclusion crystals in the chiral recognition and assembly of supramolecular helical architectures. Cryst Growth Des, 2007, 7: 935–939

    Article  CAS  Google Scholar 

  26. Gupta AK, Nicholls J, Debnath S, Rosbottom I, Steiner A, Boomishankar R. Organoamino phosphonium cations as building blocks for hierarchical supramolecular assemblies. Cryst Growth Des, 2011, 11: 555–564

    Article  CAS  Google Scholar 

  27. Zaworotko MJ. Superstructural diversity in two dimensions: crystal engineering of laminated solids. Chem Commun, 2001, 1: 1–9

    Article  Google Scholar 

  28. Wuest JD. Engineering crystals by the strategy of molecular tectonics. Chem Commun, 2005, 5: 5830–5837

    Article  Google Scholar 

  29. Dunitz JD, Gavezzotti A. Molecular recognition in organic crystals: directed intermolecular bonds or nonlocalized bonding? Angew Chem Int Ed, 2005, 44: 1766–1787

    Article  CAS  Google Scholar 

  30. Zaworotko MJ. Molecules to crystals, crystals to molecules ... and back again? Cryst Growth Des, 2007, 7: 4–9

    Article  CAS  Google Scholar 

  31. Allen FH, Motherwell WDS, Raithby PR, Shields GP, Taylor R. Systematic analysis of the probabilities of formation of bimolecular hydrogen-bonded ring motifs in organic crystal structures. New J Chem, 1999, 23: 25–34

    Article  CAS  Google Scholar 

  32. Etter MC. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res, 1990, 23: 120–126

    Article  CAS  Google Scholar 

  33. Aakeroy CB, Beatty AM. Crystal engineering of hydrogen-bonded assemblies — a progress report. Aust J Chem,2001, 54: 409–421

    Article  CAS  Google Scholar 

  34. Walsh RDB, Bradner MW, Fleischman S, Morales LA, Moulton B, Rodriguez-Hornedo N, Zaworotko MJ. Crystal engineering of the composition of pharmaceutical phases. Chem Commun, 2003, 2: 186–187

    Article  Google Scholar 

  35. Vishweshwar P. Heterosynthons in crystal engineering, Ph.D. Thesis, University of Hyderabad, India, 2003

    Google Scholar 

  36. Desiraju GR. Crystal and co-crystal. CrystEngComm, 2003, 5: 466–467

    Article  CAS  Google Scholar 

  37. Dunitz JD. Crystal and co-crystal: a second opinion. CrystEngComm, 2003, 5: 506–506

    Article  CAS  Google Scholar 

  38. Wang L, Xu LY, Xue RF, Lu XF, Chen RX, Tao XT. Cocrystallization of N-donor type compounds with 5-sulfosalicylic acid: The effect of hydrogen-bonding supramolecular architectures. Sci China Chem, 2012, 55: 138–144

    Article  CAS  Google Scholar 

  39. Wang L, Xue RF, Xu LY, Lu XF, Chen RX, Tao XT. Hydrogen-bonding directed cocrystallization of flexible piperazine with hydroxybenzoic acid derivatives: structural diversity and synthon prediction. Sci China Chem, doi: 10.1007/s11426-011-4487-4

  40. Desiraju GR. Crystal and co-crystal. CrystEngComm, 2003, 5: 466–467

    Article  CAS  Google Scholar 

  41. Dunitz JD. Crystal and co-crystal: a second opinion. CrystEngComm, 2003, 5: 506–506

    Article  CAS  Google Scholar 

  42. Aakeröy CB, Salmon DJ. Towards a realistic model for the quantitative evaluation of intermolecular potentials and for the rationalization of organic crystal structures. CrystEngComm, 2005, 7: 439–448

    Article  Google Scholar 

  43. Bond AD, What is a co-crystal? CrystEngComm, 2007, 9: 833–834

    Article  CAS  Google Scholar 

  44. Haynes DA, Jones W, Motherwell WDS. Cocrystallisation of succinic and fumaric acids with lutidines: A systematic study. CrystEngComm, 2006, 8: 830–840

    Article  CAS  Google Scholar 

  45. Fonari MS, Ganin EV, Basok SS, Lyssenko KA, Zaworotko MJ, Kravtsov VC. Structural study of salicylic acid salts of a series of azacycles and azacrown ethers. Cryst Growth Des, 2010, 10: 5210–5220

    Article  CAS  Google Scholar 

  46. Tong WQ, Whitesell G. In situ salt screening—a useful technique for discovery support and preformulation studies. Pharm DeV Technol, 1998, 3: 215–223

    Article  CAS  Google Scholar 

  47. Stahl PH, Wermuth CG, Eds. Handbook of pharmaceutical salts: properties, selection, and use; International union of pure and applied chemistry. VHCA and Wiley-VCH: New York, 2002

    Google Scholar 

  48. Johnson SL, Rumon KA. Infrared spectra of solid 1:1 pyridine-benzoic acid complexes; The nature of the hydrogen bond as a function of the acid-base levels in the complex. J Phys Chem, 2008, 69: 74–86

    Article  Google Scholar 

  49. Childs SL, Stahly GP, Park A. The salt-cocrystal continuum: The influence of crystal structure on ionization state. Mol Pharmaceutics, 2007, 4: 323–338

    Article  CAS  Google Scholar 

  50. Bhogala BR, Basavoju S, Nangia A. Tape and layer structures in cocrystals of some di- and tricarboxylic acids with 4,4′-bipyridines and isonicotinamide. From binary to ternary cocrystals. CrystEngComm, 2005, 7: 551–562

    Article  CAS  Google Scholar 

  51. SAINT Software Reference Manual, Bruker AXS: Madison, WI, 1998

  52. Sheldrick GM. SHELXTL NT Version 5.1. Program for solution and refinement of crystal structure: University of Gottingen, Germany, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Wang or ZhiQiang Hu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Zhao, L., Liu, M. et al. Three-dimensional supramolecular architecture based on 4,4′-methylene-bis(benzenamine) and aromatic carboxylic acid guests: Synthons cooperation, robust motifs and structural diversity. Sci. China Chem. 55, 2523–2531 (2012). https://doi.org/10.1007/s11426-012-4701-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4701-z

Keywords

Navigation