Skip to main content
Log in

Thermal transformation of δ-MnO2 nanoflowers studied by in-situ TEM

  • Articles
  • Special Topic Growth Mechanism of Nanostructures
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In-situ transmission electron microscopy in combination with a heating stage has been employed to real-time monitor variations of δ-phase MnO2 nanoflowers in terms of their morphology and crystalline structures upon thermal annealing at elevated temperatures up to ∼665 °C. High-temperature annealing drives the diffusion of the small δ-MnO2 nanocrystallites within short distances less than 15 nm and the fusion of the adjacent δ-MnO2 nanocrystallites, leading to the formation of larger crystalline domains including highly crystalline nanorods. The annealed nanoflowers remain their overall flower-like morphology while they are converted to α-MnO2. The preferred transformation of the δ-MnO2 to the α-MnO2 can be ascribed to the close lattice spacing of most crystalline lattices between δ-MnO2 and α-MnO2, that might lead to a possible epitaxial growth of α-MnO2 lattices on the δ-MnO2 lattices during the thermal annealing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wei W, Cui X, Chen W, Ivey DG. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev, 2011, 40: 1697–1721

    Article  CAS  Google Scholar 

  2. Lang X, Hirata A, Fujita T, Chen M. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol, 2011, 6: 232–236

    Article  CAS  Google Scholar 

  3. Thackeray MM. Manganese oxides for lithium batteries. Prog Solid St Chem, 1997, 25: 1–71

    Article  CAS  Google Scholar 

  4. Thackeray MM, David WIF, Bruce PG, Goodenough JB. Lithium insertion into manganese spinels. Mater Res Bull, 1983, 18: 461–472

    Article  CAS  Google Scholar 

  5. Débart A, Paterson AJ, Bao J, Bruce PG. α-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries. Angew Chem Int Ed, 2008, 47: 4521–4524

    Article  Google Scholar 

  6. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nat Mater, 2012, 11: 19–29

    Article  CAS  Google Scholar 

  7. Devaraj S, Munichandraiah N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C, 2008, 112: 4406–4417

    Article  CAS  Google Scholar 

  8. Brousse T, Toupin M, Dugas R, Athouel L, Crosnier O, Belanger D. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J Electrochem Soc, 2006, 153: A2171–A2180

    Article  CAS  Google Scholar 

  9. Wang X, Yuan A, Wang Y. Supercapacitive behaviors and their temperature dependence of sol-gel synthesized nanostructured manganese dioxide in lithium hydroxide electrolyte. J Power Sources, 2007, 172: 1007–1011

    Article  CAS  Google Scholar 

  10. Gao T, Fjellvag H, Norby P. Structural and morphological evolution of beta-MnO2 nanorods during hydrothermal synthesis. Nanotechnology, 2009, 20: 055610 (7)

    Google Scholar 

  11. Ye C, Lin ZM, Hui SZ. Electrochemical and capacitance properties of rod-shaped MnO2 for supercapacitor. J Electrochem Soc, 2005, 152: A1272–A1278

    Article  CAS  Google Scholar 

  12. Yu P, Zhang X, Chen Y, Ma Y. Solution-combustion synthesis of ɛ-MnO2 for supercapacitors. Mater Lett, 2010, 64: 61–64

    Article  CAS  Google Scholar 

  13. Ragupathy P, Park DH, Campet G, Vasan HN, Hwang SJ, Choy JH, Munichandraiah N. Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J Phys Chem C, 2009, 113: 6303–6309

    Article  CAS  Google Scholar 

  14. Zhou M, Zhang X, Wei J, Zhao S, Wang L, Feng B. Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures. J Phys Chem C, 2011, 115: 1398–1402

    Article  CAS  Google Scholar 

  15. Xu M, Kong L, Zhou W, Li H. Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J Phys Chem C, 2007, 111: 19141–19147

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuGang Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Liu, Y., Truong, T.T. et al. Thermal transformation of δ-MnO2 nanoflowers studied by in-situ TEM. Sci. China Chem. 55, 2346–2352 (2012). https://doi.org/10.1007/s11426-012-4688-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4688-5

Keywords

Navigation