Science China Chemistry

, Volume 55, Issue 11, pp 2346–2352 | Cite as

Thermal transformation of δ-MnO2 nanoflowers studied by in-situ TEM

  • YuGang Sun
  • YuZi Liu
  • Tu T. Truong
  • Yang Ren
Articles Special Topic Growth Mechanism of Nanostructures


In-situ transmission electron microscopy in combination with a heating stage has been employed to real-time monitor variations of δ-phase MnO2 nanoflowers in terms of their morphology and crystalline structures upon thermal annealing at elevated temperatures up to ∼665 °C. High-temperature annealing drives the diffusion of the small δ-MnO2 nanocrystallites within short distances less than 15 nm and the fusion of the adjacent δ-MnO2 nanocrystallites, leading to the formation of larger crystalline domains including highly crystalline nanorods. The annealed nanoflowers remain their overall flower-like morphology while they are converted to α-MnO2. The preferred transformation of the δ-MnO2 to the α-MnO2 can be ascribed to the close lattice spacing of most crystalline lattices between δ-MnO2 and α-MnO2, that might lead to a possible epitaxial growth of α-MnO2 lattices on the δ-MnO2 lattices during the thermal annealing process.


δ-MnO2 nanoflowers α-MnO2 thermal annealing in-situ TEM mechanism study 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11426_2012_4688_MOESM1_ESM.pdf (406 kb)
Supplementary material, approximately 405 KB.


  1. 1.
    Wei W, Cui X, Chen W, Ivey DG. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev, 2011, 40: 1697–1721CrossRefGoogle Scholar
  2. 2.
    Lang X, Hirata A, Fujita T, Chen M. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol, 2011, 6: 232–236CrossRefGoogle Scholar
  3. 3.
    Thackeray MM. Manganese oxides for lithium batteries. Prog Solid St Chem, 1997, 25: 1–71CrossRefGoogle Scholar
  4. 4.
    Thackeray MM, David WIF, Bruce PG, Goodenough JB. Lithium insertion into manganese spinels. Mater Res Bull, 1983, 18: 461–472CrossRefGoogle Scholar
  5. 5.
    Débart A, Paterson AJ, Bao J, Bruce PG. α-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries. Angew Chem Int Ed, 2008, 47: 4521–4524CrossRefGoogle Scholar
  6. 6.
    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nat Mater, 2012, 11: 19–29CrossRefGoogle Scholar
  7. 7.
    Devaraj S, Munichandraiah N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C, 2008, 112: 4406–4417CrossRefGoogle Scholar
  8. 8.
    Brousse T, Toupin M, Dugas R, Athouel L, Crosnier O, Belanger D. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J Electrochem Soc, 2006, 153: A2171–A2180CrossRefGoogle Scholar
  9. 9.
    Wang X, Yuan A, Wang Y. Supercapacitive behaviors and their temperature dependence of sol-gel synthesized nanostructured manganese dioxide in lithium hydroxide electrolyte. J Power Sources, 2007, 172: 1007–1011CrossRefGoogle Scholar
  10. 10.
    Gao T, Fjellvag H, Norby P. Structural and morphological evolution of beta-MnO2 nanorods during hydrothermal synthesis. Nanotechnology, 2009, 20: 055610 (7)Google Scholar
  11. 11.
    Ye C, Lin ZM, Hui SZ. Electrochemical and capacitance properties of rod-shaped MnO2 for supercapacitor. J Electrochem Soc, 2005, 152: A1272–A1278CrossRefGoogle Scholar
  12. 12.
    Yu P, Zhang X, Chen Y, Ma Y. Solution-combustion synthesis of ɛ-MnO2 for supercapacitors. Mater Lett, 2010, 64: 61–64CrossRefGoogle Scholar
  13. 13.
    Ragupathy P, Park DH, Campet G, Vasan HN, Hwang SJ, Choy JH, Munichandraiah N. Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J Phys Chem C, 2009, 113: 6303–6309CrossRefGoogle Scholar
  14. 14.
    Zhou M, Zhang X, Wei J, Zhao S, Wang L, Feng B. Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures. J Phys Chem C, 2011, 115: 1398–1402CrossRefGoogle Scholar
  15. 15.
    Xu M, Kong L, Zhou W, Li H. Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J Phys Chem C, 2007, 111: 19141–19147CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Center for Nanoscale MaterialsArgonne National LaboratoryArgonneUSA
  2. 2.X-Ray Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations