Skip to main content

Efficient degradation of methyl orange via multilayer films of titanium dioxide and silicotungstic acid


We report layer-by-layer (LbL) assembly of TiO2 and H4SiW12O40 (SiW12) multilayer film on silicon wafers and glass slides for photocatalytic degradation of methyl orange (MO). The photocatalytic efficiency of the obtained multilayer film increases along with the decrease of pH and salt concentration of the incubation solution. The results show that MO can be almost removed in pH 2.0 solution without salt addition in the first 60 min incubation when MO concentration is lower than 15 mg/L. Different salts show an apparent inhibitory effect on photocatalytic degradation of MO with the order of ZnCl2>KCl>NaCl>LiCl. The TiO2/SiW12 multilayer film maintains photocatalytic activity even after five degradation cycles. The reaction of MO photodegradation accords with an apparent first-order dynamics.

This is a preview of subscription content, access via your institution.


  1. 1

    Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review. Appl Catal A, 2009, 359: 25–40

    Article  CAS  Google Scholar 

  2. 2

    Yang Y, Guo YH, Hu CW, Jiang CJ, Wang EB. Synergistic effect of Keggin-type [Xn+W11O39](12−n)− and TiO2 in macroporous hybrid materials [Xn+W11O39](12−n)−-TiO2 for the photocatalytic degradation of textile dyes. J Mater Chem, 2003, 13: 1686–1694

    Article  CAS  Google Scholar 

  3. 3

    Jin HX, Wu QY, Pang WQ. Photocatalytic degradation of textile dye X-3B using polyoxometalate-TiO2 hybrid materials. J Hazard Mater, 2007, 141: 123–127.

    Article  CAS  Google Scholar 

  4. 4

    Yang Y, Wu QY, Guo YH, Hu CW, Wang EB. Efficient degradation of dye pollutants on nanoporous polyoxotungstate-anatase composite under visible-light irradiation. J Mol Catal A, 2005, 225: 203–212

    Article  CAS  Google Scholar 

  5. 5

    Tangestaninejada S, Moghadama M, Mirkhania V, Mohammadpoor-Baltork I, Salavati H. Vanadium-containing polyphosphomolybdate immobilized on TiO2 nanoparticles: A recoverable and efficient catalyst for photochemical, sonochemical and photosonochemical degradation of dyes under irradiation of UV light. J Iran Chem Soc, 2010, 7: S161–S174

    Article  Google Scholar 

  6. 6

    Priya DN, Modak JM, Raichur AM. LbL fabricated poly(styrene sulfonate)/TiO2 multilayer thin films for environmental applications. ACS App Mater Inter, 2009, 1: 2684–2693

    Article  CAS  Google Scholar 

  7. 7

    Niu P, Hao JC. Fabrication of titanium dioxide and tungstophosphate nanocomposite films and their photocatalytic degradation for methyl orange. Langmuir, 2011, 27: 13590–13597

    Article  CAS  Google Scholar 

  8. 8

    Yanagida S, Nakajima A, Sasaki T, Kameshima Y, Okada K. Processing and photocatalytic properties of transparent 12-tungsto(VI) phosphoric acid-TiO2 hybrid films. Chem Mater, 2008, 20: 3757–3764

    Article  CAS  Google Scholar 

  9. 9

    Yanagida S, Nakajima A, Sasaki T, Isobe T, Kameshima Y, Okada K. Preparation and photocatalytic activity of Keggin-ion tungstate and TiO2 hybrid layer-by-layer film composites. Appl Catal A, 2009, 366: 148–153

    Article  CAS  Google Scholar 

  10. 10

    Nakajima A, Koike T, Yanagida S, Isobe T, Kameshima Y, Okada K. Preparation and photocatalytic activity of [PWxMo12−x O40]3−/TiO2 hybrid film composites. Appl Catal A, 2010, 385: 130–135

    Article  CAS  Google Scholar 

  11. 11

    Sun ZX, Xu L, Guo WH, Xu BB, Liu SP, Li FY. Enhanced photoelectrochemical performance of nanocomposite film fabricated by self-assembly of titanium dioxide and polyoxometalates. J Phys Chem C, 2010, 114: 5211–5216

    Article  CAS  Google Scholar 

  12. 12

    Huang MH, Bi LH, Shen Y, Liu BF, Dong SJ, Nanocomposite multilayer film of preyssler-type polyoxometalates with fine tunable electrocatalytic activities. J Phys Chem B, 2004, 108: 9780–9786

    Article  CAS  Google Scholar 

  13. 13

    Liu SP, Xu L, Gao GG, Xu BB, Guo WH. Electrochromic multilayer films with enhanced stability based on polyoxometalate and TiO2. Mater Chem Phys, 2009, 116: 88–93

    Article  CAS  Google Scholar 

  14. 14

    Li CX, O’Halloran KP, Ma HY, Shi SL. Multifunctional multilayer films containing polyoxometalates and bismuth oxide nanoparticles. J Phys Chem B, 2009, 113: 8043–8048

    Article  CAS  Google Scholar 

  15. 15

    Dong YC, Chen JL, Li CH, Zhu HX. Decoloration of three azo dyes in water by photocatalysis of Fe(III)-oxalate complexes/H2O2 in the presence of inorganic salts. Dyes Pigments, 2007, 73: 261–268

    Article  CAS  Google Scholar 

  16. 16

    Guillard C, Lachheb H, Houas A, Ksibi M, Elaloui E, Herrmann JM. Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2. J Photochem Photobiol A, 2003, 158: 27–36

    Article  CAS  Google Scholar 

  17. 17

    Chen CC, Li XZ, Ma WH, Zhao JC, Hidaka H, Serpone N. Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation: A probe for the interfacial electron transfer process and reaction mechanism. J Phys Chem B, 2002, 106: 318–324

    Article  CAS  Google Scholar 

  18. 18

    Sökmen M, Özkan A. Decolourising textile wastewater with modified titania: The effects of inorganic anions on the photocatalysis. J Photochem Photobiol A, 2002, 147: 77–81

    Article  Google Scholar 

  19. 19

    Özkan A, Özkan MH, Gürkan R, Akçay M, Sökmen M. Photocatalytic degradation of a textile azo dye, Sirius Gelb GC on TiO2 or Ag-TiO2 particles in the absence and presence of UV irradiation: the effects of some inorganic anions on the photocatalysis. J Photochem Photobiol A, 2004, 163: 29–35

    Article  Google Scholar 

  20. 20

    Aguedach A, Brosillon S, Morvan J, Lhadi EK. Influence of ionic strength in the adsorption and during photocatalysis of reactive black 5 azo dye on TiO2 coated on non woven paper with SiO2 as a binder. J Hazard Mater, 2008, 150: 250–256

    Article  CAS  Google Scholar 

  21. 21

    Shchukin DG, Schattka JH, Antonietti M, Caruso RA. Photocatalytic properties of porous metal oxide networks formed by nanoparticle infiltration in a polymer gel template. J Phys Chem B, 2003, 107: 952–957

    Article  CAS  Google Scholar 

  22. 22

    Fan DW, Hao JC. Fabrication and electrocatalytic properties of chitosan and Keplerate-type polyoxometalate {Mo72Fe30} hybrid films. J Phys Chem B, 2009, 113: 7513–7516

    Article  CAS  Google Scholar 

  23. 23

    Coutinho CA, Gupta VK. Photocatalytic degradation of methyl orange using polymer-titania microcomposites. J Colloid Interface Sci, 2009, 333: 457–464

    Article  CAS  Google Scholar 

  24. 24

    Zhang YR, Wan J, Ke YQ. A novel approach of preparing TiO2 films at low temperature and its application in photocatalytic degradation of methyl orange. J Hazard Mater, 2010, 177: 750–754

    Article  CAS  Google Scholar 

  25. 25

    El-Fass MM, Badawy NA, El-Bayaa AA, Moursy NS. The influence of simple electrolyte on the behaviour of some acid dyes in aqueous media. Bull Korean Chem Soc. 1995, 16: 458–461

    CAS  Google Scholar 

  26. 26

    Guettaï N, Ait Amar H. Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. PartII: Kinetics study. Desalination, 2005, 185: 439–448

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to JingCheng Hao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Niu, P., Hao, J. Efficient degradation of methyl orange via multilayer films of titanium dioxide and silicotungstic acid. Sci. China Chem. 55, 2366–2372 (2012).

Download citation


  • TiO2
  • silicotungstic acid
  • LbL assembly
  • photocatalytic degradation
  • methyl orange