Skip to main content
Log in

Controlled growth of molecularly pure Au25(SR)18 and Au38(SR)24 nanoclusters from the same polydispersed crude product

  • Articles
  • Special Topic Growth Mechanism of Nanostructures
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We report the controlled growth of Au25(SR)18 and Au38(SR)24 (where R = CH2CH2Ph) nanoclusters of molecular purity via size-focusing from the same crude product that contains a distribution of nanoclusters. In this method, gold salt was first mixed with tetraoctylammonium bromide (TOAB), and then reacted with excess thiol to form Au(I)-SR polymers in THF (as opposed to toluene in previous work), followed by NaBH4 reduction. The resultant crude product contains polydisperse nanoclusters and was then used as the common starting material for controlled growth of Au25(SR)18 and Au38(SR)24, respectively. In Route I, Au25(SR)18 nanoclusters of molecular purify were produced from the crude product after 6 h aging at room temperature. In Route II, the crude product was isolated and further subjected to thermal thiol etching in a toluene solution containing excess thiol, and one obtained pure Au38(SR)24 nanoclusters, instead of Au25(SR)18. This work not only provides a robust and simple method to prepare both Au25(SR)18 and Au38(SR)24 nanoclusters, but also reveals that these two nanoclusters require different environments for the size-focusing growth process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin R, Zhu Y, Qian H. Quantum-sized gold nanoclusters: Bridging the gap between organometallics and nanocrystals. Chem Eur J, 2011, 17(24): 6584–6593

    Article  CAS  Google Scholar 

  2. Whetten RL, Price RC. Nano-golden order. Science, 2007, 318(5849): 407–408

    Article  CAS  Google Scholar 

  3. Jiang D, Whetten RL. Magnetic doping of a thiolated-gold superatom: First-principles density functional theory calculations. Phys Rev B, 2009, 80: 115402–115405

    Article  Google Scholar 

  4. Pei Y, Gao Y, Zeng XC. Structural prediction of thiolate-protected Au38: A face-fused bi-icosahedral Au core. J Am Chem Soc, 2008, 130: 7830–7832

    Article  CAS  Google Scholar 

  5. Lopez-Acevedo O, Akola J, Whetten RL, Gronbeck H, Hakkinen H. Structure and bonding in the ubiquitous icosahedral metallic gold cluster Au144(SR)60. J Phys Chem C, 2009, 113(13): 5035–5038

    Article  CAS  Google Scholar 

  6. Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc, 2008, 130(18): 5883–5885

    Article  CAS  Google Scholar 

  7. Jin R, Qian H, Zhu Y, Das A. Atomically precise nanoparticles: A new frontier in nanoscience. J Nanosci Lett, 2011, 1(2): 72–78

    CAS  Google Scholar 

  8. Wyrwas RB, Alvarez MM, Khoury JT, Price RC, Schaaff TG, Whetten RL. The colours of nanometric gold: Optical response functions of selected gold-cluster thiolates. Eur Phys J D, 2007, 43: 91–95

    Article  CAS  Google Scholar 

  9. Parker JF, Weaver JEF, McCallum F, Fields-Zinna CA, Murray RW. Synthesis of monodisperse [Oct4N+][Au25(SR)18] nanoparticles with some mechanistic observations. Langmuir, 2010, 26(16): 13650–13654

    Article  CAS  Google Scholar 

  10. Negishi Y, Chaki NK, Shichibu Y, Whetten RL, Tsukuda T. Origin of magic stability of thiolated gold clusters: A case study on Au25(SC6H13)18. J Am Chem Soc, 2007, 129(37): 11322–11323

    Article  CAS  Google Scholar 

  11. Dharmaratne AC, Krick T, Dass A. Nanocluster size evolution studied by mass spectrometry in room temperature Au25(SR)18 synthesis. J Am Chem Soc, 2009, 131(38): 13604–13605

    Article  CAS  Google Scholar 

  12. Negishi Y, Kurashige W, Niihori Y, Iwasa T, Nobusada K. Isolation structure and stability of a dodecanethiolate-protected Pd1Au24 cluster. Phys Chem Chem Phys, 2010, 12: 6219–6225

    Article  CAS  Google Scholar 

  13. Gautier C, Burgi T. Chiral gold nanoparticles. ChemPhysChem, 2009, 10: 483–492

    Article  CAS  Google Scholar 

  14. Habeeb Muhammed MA, Pradeep T. Au25@SiO2: Quantum clusters of gold embedded in silica. Small, 2011, 7: 204–208

    Article  CAS  Google Scholar 

  15. Devadas MS, Kim J, Sinn E, Lee D, Goodson III T, Ramakrishna G. Unique ultrafast visible luminescence in monolayer-protected Au25 clusters. J Phys Chem C, 2010, 114(51): 22417–22423

    Article  CAS  Google Scholar 

  16. Qian H, Sfeir MY, Jin R. Ultrafast relaxation dynamics of [Au25(SR)18]q nanoclusters: Effects of charge state. J Phys Chem C, 2010, 114: 19935–19940

    Article  CAS  Google Scholar 

  17. Tsukuda T, Tsunoyama H, Sakurai H. Aerobic oxidations catalyzed by colloidal nanogold. Chem Asian J, 2011, 6(3): 736–748

    Article  CAS  Google Scholar 

  18. Zhu Y, Qian H, Jin R. Catalysis opportunities of atomically precise gold nanoclusters. J Mater Chem, 2011. 21: 6793–6799

    Article  CAS  Google Scholar 

  19. Zhu M, Lanni E, Garg N, Bier ME, Jin R. Kinetically controlled high-yield synthesis of Au25 clusters. J Am Chem Soc, 2008, 130(4): 1138–1139

    Article  CAS  Google Scholar 

  20. Wu Z, Suhan J, Jin R. One-pot synthesis of atomically monodisperse thiol-functionalized Au25 nanoclusters. J Mater Chem, 2009, 19(5): 622–626

    Article  CAS  Google Scholar 

  21. Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R. Correlating the crystal structure of a thiol-protected Au25 Cluster and optical properties. J Am Chem Soc, 2008, 130: 5883–5885

    Article  CAS  Google Scholar 

  22. Zhu M, Qian H, Jin R. Thiolate-protected Au20 clusters with a large energy gap of 2.1 eV. J Am Chem Soc, 2009, 131(21): 7220–7221

    Article  CAS  Google Scholar 

  23. Zhu M, Qian H, Jin R. Thiolate-protected Au24(SC2H4Ph)20 nanoclusters: Superatoms or not? J Phys Chem Lett, 2010, 1(6): 1003–1007

    Article  CAS  Google Scholar 

  24. Nimmala PR, Dass A. Au36(SPh)23 nanomolecules. J Am Chem Soc, 2011, 133: 9175–9177

    Article  CAS  Google Scholar 

  25. Chaki NK, Negishi Y, Tsunoyama H, Shichibu Y, Tsukuda T. Ubiquitous 8 and 29 kDa gold:alkanethiolate cluster compounds: Mass-spectrometric determination of molecular formulas and structural implications. J Am Chem Soc, 2008, 130(27): 8608–8610

    Article  CAS  Google Scholar 

  26. Qian H, Zhu M, Andersen UN, Jin R. Facile large-scale synthesis of dodecanethiol-stabilized Au38 clusters. J Phys Chem A, 2009, 113(16): 4281–4284

    Article  CAS  Google Scholar 

  27. Qian H, Zhu Y, Jin R. Size-focusing synthesis optical and electrochemical properties of monodisperse Au38(SC2H4Ph)24 nanoclusters. ACS Nano, 2009, 3(11): 3795–3803

    Article  CAS  Google Scholar 

  28. Qian H, Zhu Y, Jin R. Isolation of ubiquitous Au40(SR)24 clusters from the 8 kDa gold clusters. J Am Chem Soc, 2010, 132: 4583–4585

    Article  CAS  Google Scholar 

  29. Tsunoyama R, Tsunoyama H, Pannopard P, Limtrakul J, Tsukuda T. MALDI mass analysis of 11 kDa gold clusters protected by octadecanethiolate ligands. J Phys Chem C, 2010, 114(38): 16004–16009

    Article  CAS  Google Scholar 

  30. Qian H, Jin R. Synthesis and electrospray mass spectrometry determination of thiolate-protected Au55(SR)31 nanoclusters. Chem Commun, 2011, (41): 11462–11464

  31. Hulkko E, Lopez-Acevedo O, Koivisto J, Levi-Kalisman Y, Kornberg RD, Pettersson M, Häkkinen H. Electronic and vibrational signatures of the Au102(p-MBA)44 cluster. J Am Chem Soc, 2011, 133: 3752–3755

    Article  CAS  Google Scholar 

  32. Qian H, Jin R. Controlling nanoparticles with atomic precision: The case of Au144(SCH2CH2Ph)60. Nano Lett, 2009, 9(12): 4083–4087

    Article  CAS  Google Scholar 

  33. Qian H, Jin R. Ambient synthesis of Au144(SR)60 nanoclusters in methanol. Chem Mater, 2011, 23(8): 2209–2217

    Article  CAS  Google Scholar 

  34. Qian H, Zhu Y, Jin R. Atomically precise gold nanocrystal molecules with surface plasmon resonance. Proc Natl Acad Sci USA, 2012, 109(3): 696–700

    Article  CAS  Google Scholar 

  35. Jin R, Qian H, Wu Z, Zhu Y, Zhu M, Mohanty A, Garg N. Size focusing: A methodology for synthesizing atomically precise gold nanoclusters. J Phys Chem Lett, 2010, 1: 2903–2910

    Article  CAS  Google Scholar 

  36. Wu Z, MacDonald M, Chen J, Zhang P, Jin R. Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters. J Am Chem Soc, 2011, 133: 9670–9673

    Article  CAS  Google Scholar 

  37. Qian H, Eckenhoff WT, Zhu Y, Pintauer T, Jin R. Total structure determination of thiolate-protected Au38 nanoparticles. J Am Chem Soc, 2010, 132(24): 8280–8281

    Article  CAS  Google Scholar 

  38. Qian H, Zhu M, Gayathri C, Gil RR, Jin R. Chirality of gold nanoclusters probed by NMR spectroscopy. ACS Nano, 2011, 5: 8935–8942

    Article  CAS  Google Scholar 

  39. Zhu M, Eckenhoff WT, Pintauer T, Jin R. Conversion of anionic [Au25(SCH2CH2Ph)18] cluster to charge neutral cluster via air oxidation. J Phys Chem C, 2008, 112: 14221–14224

    Article  CAS  Google Scholar 

  40. Parker JF, Choi JP, Wang W, Murray RW. Electron self-exchange dynamics of the nanoparticle couple [Au25(SC2Ph)18]0/1 by nuclear magnetic resonance line-broadening. J Phys Chem C, 2008, 112: 13976–13981

    Article  CAS  Google Scholar 

  41. Zhu M, Chan G, Qian H, Jin R. Unexpected reactivity of Au25(SCH2CH2Ph)18 nanoclusters with salts. Nanoscale, 2011, 3: 1703–1707

    Article  CAS  Google Scholar 

  42. Venzo A, Antonello S, Gascon JA, Guryanov I, Leapman RD, Perera NV, Sousa AA, Zamuner M, Zanella A, Maran F. Effect of the charge state (z = −1 0 +1) on the nuclear magnetic resonance of monodisperse Au25[S(CH2)2Ph]18 z clusters. Anal Chem, 2011, 83(16): 6355–6362

    Article  CAS  Google Scholar 

  43. Liu Z, Zhu M-Z, Meng X, Xu G, Jin R. Electron t7ransfer between [Au25(SC2H4Ph)18]TOA+ and Oxoammonium Cations J Phys Chem Lett, 2011 2: 2104–2109

    Article  CAS  Google Scholar 

  44. Zhu M, Aikens CM, Hendrich MP, Gupta R, Qian H, Schatz GC, Jin R. Reversible switching of magnetism in thiolate-protected Au25 superatoms. J Am Chem Soc, 2009, 131(7): 2490–2492

    Article  CAS  Google Scholar 

  45. Yao H, Fukui T, Kimura K. Asymmetric transformation of monolayer-protected gold nanoclusters via chiral phase transfer. J Phys Chem C, 2008, 112: 16281–16285

    Article  CAS  Google Scholar 

  46. Knoppe S, Dharmaratne AC, Schreiner E, Dass A, Burgi T. Ligand exchange reactions on Au38 and Au40 clusters: A combined circular dichroism and mass spectrometry study. J Am Chem Soc, 2010, 132(47): 16783–16789

    Article  CAS  Google Scholar 

  47. Zhu M, Qian H, Meng X, Jin S, Wu Z, Jin R. Chiral Au25 nanospheres and nanorods: Synthesis and insight into the origin of chirality. Nano Lett, 2011, 11(9): 3963–3969

    Article  CAS  Google Scholar 

  48. George A, Shibu ES, Maliyekkal SM, Bootharaju MS, Pradeep T. Luminescent freestanding composite films of Au15 for specific metal ion sensing. ACS Appl Mater Interf, 2012, 4(2): 639–644

    Article  CAS  Google Scholar 

  49. Wu Z, Jin R. On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett, 2010, 10(7): 2568–2573

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RongChao Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, H., Liu, C. & Jin, R. Controlled growth of molecularly pure Au25(SR)18 and Au38(SR)24 nanoclusters from the same polydispersed crude product. Sci. China Chem. 55, 2359–2365 (2012). https://doi.org/10.1007/s11426-012-4669-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4669-8

Keywords

Navigation