Skip to main content
Log in

SnO2 hollow spheres: Polymer bead-templated hydrothermal synthesis and their electrochemical properties for lithium storage

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

SnO2 hollow spheres have been synthesized via a facile hydrothermal method using sulfonated polystyrene beads as a template followed by a calcination process in air. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy show that the as-obtained SnO2 hollow spheres have a wall thickness of about 50 nm, and consist of nanosized SnO2 particles with a mean diameter of about 15 nm. Electrochemical measurements indicate that the SnO2 hollow spheres exhibit improved electrochemical performance in terms of specific capacity and rate capability in comparison with commercial SnO2 when used as anode materials for lithium-ion batteries. The enhanced performance may be attributed to the spherical and hollow structure, as well as the building blocks of SnO2 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu WF, Huang XJ, Wang ZX, Li H, Chen LQ. Studies of stannic oxide as an anode material for lithium-ion batteries. J Electrochem Soc, 1998, 145: 59–62

    Article  CAS  Google Scholar 

  2. Xin S, Guo YG, Wan LJ. Electrode materials for lithium secondary batteries with high energy densities. Sci Sinica Chim, 2011, 41: 1229–1239 (in Chinese)

    Article  Google Scholar 

  3. Larcher D, Beattie S, Morcrette M, Edstroem K, Jumas JC, Tarascon JM. Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J Mater Chem, 2007, 17: 3759–3772

    Article  CAS  Google Scholar 

  4. Fan J, Wang T, Yu C, Tu B, Jiang Z, Zhao D. Ordered, nanostructured tin-based oxides/carbon composite as the negative-electrode material for lithium-ion batteries. Adv Mater, 2004, 16: 1432–1436

    Article  CAS  Google Scholar 

  5. Maier J. Nanoionics: Ion transport and electrochemical storage in confined systems. Nat Mater, 2005, 4: 805–815

    Article  CAS  Google Scholar 

  6. Guo YG, Hu JS, Wan LJ. Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater, 2008, 20: 2878–2887

    Article  CAS  Google Scholar 

  7. Juttukonda V, Paddock RL, Raymond JE, Denomme D, Richardson AE, Slusher LE, Fahlman BD. Facile synthesis of tin oxide nanoparticles stabilized by dendritic polymers. J Am Chem Soc, 2006, 128: 420–421

    Article  CAS  Google Scholar 

  8. Cheng B, Russell JM, Shi W, Zhang L, Samulski ET. Large-scale, solution-phase growth of single-crystalline SnO2 nanorods. J Am Chem Soc, 2004, 126: 5972–5973

    Article  CAS  Google Scholar 

  9. Dai ZR, Pan ZW, Wang ZL. Growth and structure evolution of novel tin oxide diskettes. J Am Chem Soc, 2002, 124: 8673–8680

    Article  CAS  Google Scholar 

  10. Yang HG, Zeng HC. Self-construction of hollow SnO2 octahedra based on two-dimensional aggregation of nanocrystallites. Angew Chem Int Ed, 2004, 43: 5930–5933

    Article  CAS  Google Scholar 

  11. Liu Y, Dong J, Liu M. Well-aligned “nano-box-beams” of SnO2. Adv Mater, 2004, 16: 353–356

    Article  CAS  Google Scholar 

  12. Lou XW, Wang Y, Yuan C, Lee JY, Archer LA. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater, 2006, 18: 2325–2329

    Article  CAS  Google Scholar 

  13. Zhang WM, Hu JS, Guo YG, Zheng SF, Zhong LS, Song WG, Wan LJ. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater, 2008, 20: 1160–1165

    Article  CAS  Google Scholar 

  14. Gates B, Park SH, Xia Y. Tuning the photonic bandgap properties of crystalline arrays of polystyrene beads by annealing at elevated temperatures. Adv Mater, 2000, 12: 653–656

    Article  CAS  Google Scholar 

  15. Zhang X, Man Y, Wang J, Liu C, Wu W. Synthesis of 3D ordered macroporous indium tin oxide using polymer colloidal crystal template. Sci China Ser E, 2006, 49: 537–546

    Article  CAS  Google Scholar 

  16. Du N, Zhang H, Chen J, Sun J, Chen B, Yang D. Metal oxide and sulfide hollow spheres: Layer-by-layer synthesis and their application in lithium-ion battery. J Phys Chem B, 2008, 112: 14836–14842

    Article  CAS  Google Scholar 

  17. Cao AM, Hu JS, Liang HP, Wan LJ. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew Chem Int Ed, 2005, 44: 4391–4395

    Article  CAS  Google Scholar 

  18. Im SH, Jeong U, Xia YN. Polymer hollow particles with controllable holes in their surfaces. Nat Mater, 2005, 4: 671–675

    Article  Google Scholar 

  19. Yin YD, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science, 2004, 304: 711–714

    Article  CAS  Google Scholar 

  20. Caruso F, Shi X, Caruso RA, Susha A. Hollow titania spheres from layered precursor deposition on sacrificial colloidal core particles. Adv Mater, 2001, 13: 740–744

    Article  CAS  Google Scholar 

  21. Li M, Lu QH, Nuli Y, Qian XF. Core-shell and hollow microspheres composed of tin oxide nanocrystals as anode materials for lithium-ion batteries. Electrochem Solid-State Lett, 2007, 10: K33–K37

    Article  CAS  Google Scholar 

  22. Yang Z, Niu Z, Lu Y, Hu Z. Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core-shell gel particles. Angew Chem Int Ed, 2003, 115: 1987–1989

    Article  Google Scholar 

  23. Ding S, Zhang C, Qu X, Liu J, Lu Y, Yang Z. Porous carbon and carbon composite hollow spheres. Colloid Polym Sci, 2008, 286: 1093–1096

    Article  CAS  Google Scholar 

  24. Yang ZZ, Li D, Rong JH, Yan WD, Niu ZW. Opal hydrogels derived by sulfonation of polystyrene colloidal crystals. Macromol Mater Eng, 2002, 287: 627–633

    Article  CAS  Google Scholar 

  25. Aurbach D, Nimberger A, Markovsky B, Levi E, Sominski E, Gedanken A. Nanoparticles of SnO produced by sonochemistry as anode materials for rechargeable lithium batteries. Chem Mater, 2002, 14: 4155–4163

    Article  CAS  Google Scholar 

  26. Cui GL, Hu YS, Zhi LJ, Lieberwirt I, Maier J, Müllen K. A one-step approach towards carbon-encapsulated hollow tin nanoparticles and their application in lithium batteries. Small, 2007, 3: 2066–2069

    Article  CAS  Google Scholar 

  27. Jiang LY, Wu XL, Guo YG, Wan LJ, SnO2-based hierarchical nanomicrostructures: Facile synthesis and their applications in gas sensors and lithium-ion batteries. J Phys Chem C, 2009, 113: 14213–14219

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to CongJu Li or YuGuo Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Y., Xin, S., Wan, L. et al. SnO2 hollow spheres: Polymer bead-templated hydrothermal synthesis and their electrochemical properties for lithium storage. Sci. China Chem. 55, 1314–1318 (2012). https://doi.org/10.1007/s11426-012-4659-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4659-x

Keywords

Navigation