Skip to main content
Log in

Photocatalytic debromination of decabromodiphenyl ether by graphitic carbon nitride

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The graphitic carbon nitride (g-C3N4) is found to be an efficient photocatalyst for the reductive degradation of decabromodiphenyl ether (BDE209) under UV irradiation (>360 nm). g-C3N4 was prepared by heating dicyandiamide. X-ray diffraction, X-ray photoelectron spectroscopy, and UV-vis spectra were used to characterize the properties of as-prepared catalysts. The photoreductive degradation kinetics of BDE209 was further investigated under different reaction conditions. The degradation of BDE209 is a stepwise process, and the bromines at meta positions are much more susceptible to remove than those at the ortho and para positions. A possible photoreductive mechanism was also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alaee M, Arias P, Sjodin A, Bergman A. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ Int, 2003, 29: 683–689

    Article  CAS  Google Scholar 

  2. Mai B, Chen S, Luo X, Chen L, Yang Q, Sheng G, Peng P, Fu J, Zeng E. Distribution of polybrominated diphenyl ethers in sediments of the Pearl River Delta and adjacent South China Sea. Environ Sci Technol, 2005, 39: 3521–3527

    Article  CAS  Google Scholar 

  3. de Wit CA. An overview of brominated flame retardants in the environment. Chemosphere, 2002, 46: 583–624

    Article  Google Scholar 

  4. Ikonomou MG, Rayne S, Addison RF. Exponential increases of the brominated flame retardants, polybrominated diphenyl ethers, in the Canadian Arctic from 1981 to 2000. Environ Sci Technol, 2002, 36: 1886–1892

    Article  CAS  Google Scholar 

  5. Kierkegaard A, Balk L, Tjarnlund U, de Wit CA, Jansson B. Dietary uptake and biological effects of decabromodiphenyl ether in rainbow trout (Oncorhynchus mykiss). Environ Sci Technol, 1999, 33: 1612–1617

    Article  CAS  Google Scholar 

  6. Meerts IATM, Letcher RJ, Hoving S, Marsh G, Bergman A, Lemman JG, van der Burg B, Brouwer A. In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PBDEs, and polybrominated bisphenol A compounds. Environ Health Perspect, 2001, 109: 399–407

    Article  CAS  Google Scholar 

  7. Norris JM, Ehrmantraut JW, Gibbons CL, Kociba RJ, Schwetz BA, Rose JQ, Humiston CG, Jewett GL, Crummett WB, Gehring PJ, Tirsell JB, Brosier JS. Toxicology and environmental factors involved in the selection of decabromodiphenyl oxide as a fire retardant chemical. Appl Polym Symp, 1973, 22: 195–219

    Google Scholar 

  8. Watanabe I, Tatsukawa R. Formation of brominated dibe-zofurans from the photolysis of flame retardant decabromo-biphenyl ether in hexane solution by UV and sunlight. Environ Contam Toxicol, 1987, 39: 953–959

    Article  CAS  Google Scholar 

  9. Bezares-ruz J, Jafvert CT, Hua I. Solar photodecomposition of decabromodiphenyl ether: products and quantum yield. Environ Sci Technol, 2004, 38: 4149–4156

    Article  Google Scholar 

  10. Gerecke AC, Hartmann PC, Heeb NV, Kohler HE, Giger W, Schmid P, Zennegg, M, Kohler M. Anaerobic degradation of decabromodiphenyl ether. Environ Sci Technol, 2005, 39: 1078–1083

    Article  CAS  Google Scholar 

  11. Hua I, Kang N, Chad TJ, Fa’brega-Duque J. Heterogeneous photochemical reactions of decabromodiphenyl ether. Environ Toxicol Chem, 2003, 22, 798-804

    Google Scholar 

  12. Keum YS, Li QX. Reductive debromination of polybrominated diphenyl ethers by zerovalent iron. Environ Sci Technol, 2005, 39: 2280–2286

    Article  CAS  Google Scholar 

  13. Sun CY, Zhao D, Chen CC, Ma WH, Zhao JC. TiO2-mediated photocatalytic debromination of decabromodiphenyl ether: Kinetics and intermediates. Environ Sci Technol, 2009, 43: 157–162

    Article  CAS  Google Scholar 

  14. Nose KS, Hashimoto SJ, Takahashi S, Noma YK, Sakai SI. Degradation pathways of decabromodiphenyl ether during hydrothermal treatment. Chemosphere, 2007, 68:120–125

    Article  CAS  Google Scholar 

  15. Wang XC, Chen XF, Thomas A, Fu XZ, Antonietti M. Metal-containing carbon nitride compounds: A new functional organicmetal hybrid material. Adv Mater, 2009, 21: 1609–1612

    Article  CAS  Google Scholar 

  16. Wang Y, Wang XC, Antonietti M. Polymeric graphitic carbon nitride as a heterogenous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Ed, 2011, 50: 2–24

    Article  Google Scholar 

  17. Liu G, Niu P, Sun CH, Smith SC, Chen ZG, Lu GQ, Cheng HM. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J Am Chem Soc, 2010, 132: 11642–11648

    Article  CAS  Google Scholar 

  18. Yue B Li Q, Iwai H, Kako T, Ye J. Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light. Sci Technol Adv Mater, 2011, 12: 7

    Article  Google Scholar 

  19. Cui YJ, Ding ZG, Liu P, Antonietti M, Fu XZ, Wang XC. Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. Phys Chem Chem Phys, 2012, 14: 1455–1462

    Article  CAS  Google Scholar 

  20. Yan SC, Li ZS, Zou ZG. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir, 2010, 26: 3894–3901

    Article  CAS  Google Scholar 

  21. Goettmann F, Fischer A, Antonietti M, Thomas A. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction of benzene. Angew Chem Int Ed, 2006, 45: 4467

    Article  CAS  Google Scholar 

  22. Korytár P, Covaci A, Boer J, Gelbin A, Brinkman UAT. Retention-time database of 126 polybrominated diphenyl ether congeners and two bromkal technical mixtures on seven capillary gas chromatographic columns. J Chromatogr A, 2005, 1065: 239–249

    Article  Google Scholar 

  23. Wang YW, Li A, Liu HX, Zhang QH, Ma W, Song WL, Jiang GB. Development of quantitative structure gas chromatographic relative retention time models on seven stationary phases for 209 polybrominated diphenyl ether congeners. J Chromatogr A, 2006, 1103: 314–328

    Article  CAS  Google Scholar 

  24. Zhao JC, Wu TX, Wu KQ, Oikawa KK, Hidaka H, Serpone N. Photoassisted degradation of dye pollutants: Evidence for the need for substrate adsorption on TiO2 particles. Environ Sci Technol, 1998, 32: 2394–2400

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinCai Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, C., Chen, C., Ma, W. et al. Photocatalytic debromination of decabromodiphenyl ether by graphitic carbon nitride. Sci. China Chem. 55, 2532–2536 (2012). https://doi.org/10.1007/s11426-012-4644-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4644-4

Keyowrds

Navigation