Skip to main content
Log in

Experiments and model for the surface tension of carbonated monoethanolamine aqueous solutions

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The surface tension of carbonated monoethanolamine aqueous solutions from 293.15 to 323.15 K was measured by using an automatic surface tension-meter. A model applicable for the surface tension of MEA-CO2-water mixtures was proposed and the calculated results agreed well with the experiments. The influences of temperature, MEA concentration and CO2 loading were demonstrated on the basis of experiments and calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nahicenovic N, John A. CO2 reduction and removal: Measures for the next century. Energy, 1991, 16: 1347–1377

    Article  Google Scholar 

  2. Kralj AK, Glavic P. CO2 separation from purge gas and flue gas in the methanol process, using NLP model optimization. Ind Eng Chem Res, 2007, 46: 6953–6962

    Article  CAS  Google Scholar 

  3. Wang BQ, Jin HG, Zheng DX. Recovery of CO2 with MEA and K2CO3 absorption in the IGCC system. Inter J Energy Res, 2004, 28: 521–535

    Article  CAS  Google Scholar 

  4. Zheng CC, Liu DH, Yang QY, Zhong CL, Mi JG. Computational study on the influences of framework charges on CO2 uptake in metal-organic frameworks. Ind Eng Chem Res, 2009, 48: 10479–10484

    Article  CAS  Google Scholar 

  5. Wu D, Xu Q, Liu DH, Zhong CL. Exceptional CO2 capture capability and molecular-level segregation in a Li-modified metal-organic framework. J Phys Chem C, 2010, 114: 16611–16617

    Article  CAS  Google Scholar 

  6. Wang SY, Yang QY, Zhong CL. Adsorption and separation of binary mixtures in a metal-organic framework Cu-BTC: A computational study. Sep Sci Technol, 2008, 60: 30–35

    CAS  Google Scholar 

  7. Lan JH, Cao DP, Wang WC, Smit B. Doping of alkali, alkaline-earth, and transition metals in covalent-organic frameworks for enhancing CO2 capture by first-principles calculations and molecular simulations. ACS NANO, 2010, 4: 4225–4237

    Article  CAS  Google Scholar 

  8. Matsumiya N, Teramoto M, Kitada S. Evaluation of energy consumption for separation of CO2 in flue gas by hollow fiber facilitated transport membrane module with permeation of amine solution. Sep Puri Tech, 2005, 46: 26–32

    Article  CAS  Google Scholar 

  9. Yan SP, Fang MX, Zhang WF. Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting. Fuel Pro Tech, 2007, 88: 501–511

    Article  CAS  Google Scholar 

  10. Yan SP, Fang MX, Zhang WF. Comparative analysis of CO2 separation from flue gas by membrane gas absorption technology and chemical absorption technology in China. Energ Convers Manage, 2008, 49: 3188–3197

    Article  CAS  Google Scholar 

  11. Li XS, Xu CG, Chen ZY, Wu HJ. Hydrate-based pre-combustion carbon dioxide capture process in the system with tetra-n-butyl ammonium bromide solution in the presence of cyclopentane. Energy, 2011, 36: 1394–1403

    Article  CAS  Google Scholar 

  12. Li XS, Xia ZM, Chen ZY, Yan KF, Li G, Wu HJ. Gas hydrate formation process for capture of CO2 from fuel gas mixture. Ind Eng Chem Res, 2010, 49: 11614–11619

    Article  CAS  Google Scholar 

  13. Li XS, Wu HJ, Li YG. Hydrate dissociation conditions for gas mixtures containing carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons using SAFT. J Chem Thermo, 2007, 39: 417–425

    Article  CAS  Google Scholar 

  14. Shen KP, Li MH. Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine. J Chem Eng Data, 1992, 37: 96–100

    Article  CAS  Google Scholar 

  15. Kundu M, Bandyopadhyay SS. Solubility of CO2 in water + diethanolamine + N-methyldiethanolamine. Fluid Phase Equilib, 2006, 248: 158–167

    Article  CAS  Google Scholar 

  16. Barreau A, Blanchon le Bouhelec E, Habchi Tounsi KN, Mougin P, Lecomte F. Absorption of H2S and CO2 in alkanolamine aqueous solution: Experimental data and modelling with the electrolyte-NRTL model. Oil & Gas Sci Tech, 2006, 61: 345–361

    Article  CAS  Google Scholar 

  17. Zhang Y, Chen CY. Modeling for CO2 absorption in aqueous MDEA solution with electrolyte NRTL model. Ind Eng Chem Res, 2011, 50: 163–175

    Article  CAS  Google Scholar 

  18. Park SH, Lee KB, Hyun JC. Correlation and prediction of the solubility of carbon dioxide in aqueous alkanolamine and mixed alkanolamine solutions. Ind Eng Chem Res, 2002, 41: 1658–1665

    Article  CAS  Google Scholar 

  19. Haji-Sulaiman MZ, Aroua MK, Benamor A. Analysis of equilibrium data of CO2 in aqueous solutions of DEA, MDEA and their mixtures using the modified Kent Eisenberg model. Trans Chem E, 1998, 76: 961–968

    Article  CAS  Google Scholar 

  20. Zheng Q, Dong LH, Chen J, Gao GH, Fei WY. Absorption solubility calculation and process simulation for CO2 capture. J Chem Ind Eng, 2010, 61: 740–1746

    Google Scholar 

  21. Chen J, Mi JG, Liu JC. Calculation of gas solubility in the system MDEA-H2O-CO2-H2S. Natural Gas Chem Ind, 2001, 26: 57–61

    CAS  Google Scholar 

  22. Li YG. Correlation and prediction of carbon dioxide solubility in MDEA-MEA-CO2-H2O systems. J Chem Ind Eng, 1995, 46: 158–166

    Google Scholar 

  23. Li Y, Mather AE. The correlation and prediction of the solubility of carbon dioxide in a mixed alkanolamine solution. Ind Eng Chem Res, 1994, 33: 2006–2011

    Article  CAS  Google Scholar 

  24. Li Y, Mather AE. Correlation and prediction of the solubility of CO2 and H2S in aqueous solutions of triethanolamine. Ind Eng Chem Res, 1996, 35: 4804–4809

    Article  CAS  Google Scholar 

  25. Maham Y, Mather AE. Surface thermodynamics of aqueous solutions of alkylethanolamines. Fluid Phase Equilib, 2001, 182: 325–336

    Article  CAS  Google Scholar 

  26. Aguila-Hernández J, Trejo A, Gracia-Fadrique J. Surface tension of aqueous solutions of alkanolamines: Single amines, blended amines and systems with nonionic surfactants. Fluid Phase Equilib, 2001, 185: 165–175

    Article  Google Scholar 

  27. Ayyaz M, Mohammad IAM, Cecilia DW, Thanabalan M, Amir S. Viscosity, refractive index, surface tension, and thermal decomposition of aqueous N-methyldiethanolamine solutions from (298.15 to 338.15) K. J Chem Eng Data, 2008, 53: 2226–2229

    Article  Google Scholar 

  28. Vazquez G, Alvarez E, Navaza JM, Rendo R, Romero E. Surface tension of binary mixtures of water + monoethanolamine and water + 2-amino-2-methyl-1-propanol and tertiary mixtures of these amines with water from 25 to 50 °C. J Chem Eng Data, 1997, 42: 57–59

    Article  CAS  Google Scholar 

  29. Vazquez G, Alvarez E, Rendo R. Surface tension of aqueous solutions of diethanolamine and triethanolamine from 25 to 50 °C. J Chem Eng Data, 1996, 41: 806–808

    Article  CAS  Google Scholar 

  30. Rinker EB, Oelschlager DW, Colussi AT, Henry KR, Sandall OC. Viscosity, density, and surface tension of binary mixtures of water and N-methyldiethanolamine-water and diethanolamine and tertiary mixtures of these amines with water over the temperature range 20–100 degree. J Chem Eng Data, 1994, 39: 392–395

    Article  CAS  Google Scholar 

  31. Alvarez E, Rendo R, Sanjurjo B, Sańchez-Vilas M, Navaza JM. Surface tension of binary mixtures of water + N-methyldiethanolamine and ternary mixtures of this amine and water with monoethanolamine, diethanolamine, and 2-amino-2-methyl-1-propanol from 25 to 50 °C. J Chem Eng Data, 1998, 43: 1027–1029

    Article  CAS  Google Scholar 

  32. Fu D, Zhong ZK. Experimental study on the surface tension of diethanolamine-N-methyldiethanolamine-water mixtures. Acta Chim Sinica, 2010, 68: 1241–1246

    CAS  Google Scholar 

  33. Weiland R H, Dingman JC, Cronin DB, Browning G J. Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends. J Chem Eng Data, 1998, 43: 378–382

    Article  CAS  Google Scholar 

  34. Zhou D, Zeng M, Mi JG, Zhong CL. Theoretical study of phase transition, surface tension, and nucleation rate predictions for argon. J Phys Chem B, 2011, 115: 57–63

    Article  CAS  Google Scholar 

  35. He YJ, Mi JG, Zhong CL. Surface tension and Tolman length of spherical particulate in contact with fluid. J Phys Chem B, 2008, 112: 7251–7256

    Article  CAS  Google Scholar 

  36. Fu D, Yang Z, Lu JY, Liu JM. A cross-association model for CO2-methanol and CO2-ethanol mixtures. Sci China Chem, 2010, 53: 1438–1444

    Article  CAS  Google Scholar 

  37. Fu D. Investigation of the interfacial properties for CO2-methanol and CO2-ethanol mixtures. Sci China Chem, 2011, 54: 856–862

    Article  CAS  Google Scholar 

  38. Yu YX. A novel weighted density functional theory for adsorption, fluid-solid interfacial tension, and disjoining properties of simple liquid films on planar solid surfaces. J Chem Phys, 2009, 131: 024704

    Article  Google Scholar 

  39. Peng B, Yu YX. A density functional theory with a mean-field weight function: Applications to surface tension, adsorption, and phase transition of a Lennerd-Jones fluid in a slit-like pore. J Phys Chem B, 2008,112: 15407–15416

    Article  CAS  Google Scholar 

  40. Yu YX, Li YF, Zheng YX. Thin-thick film transitions on a planar solid surface: A density functional study. Chin Phys Lett, 2010, 27: 037101

    Article  Google Scholar 

  41. Mandal BP, Kundu M, Bandyopadhyay SS. Density and viscosity of aqueous solutions of (N-methyldiethanolamine + monoethanolamine), (N-methyldiethanolamine + diethanolamine), (2-amino-2-methyl-1-propanol + monoethanolamine), and (2-amino-2-methyl-1-propanol + diethanolamine). J Chem Eng Data, 2003, 48: 703–707

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, D., Xu, Y., Wang, L. et al. Experiments and model for the surface tension of carbonated monoethanolamine aqueous solutions. Sci. China Chem. 55, 1467–1473 (2012). https://doi.org/10.1007/s11426-012-4641-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4641-7

Keywords

Navigation