Controllable synthesis of titania/reduced graphite oxide nanocomposites with various titania phase compositions and their photocatalytic performance

Abstract

A facile method is presented for preparing TiO2/reduced graphite oxide (RGO) nanocomposites with phase-controlled TiO2 nanoparticles via redox reaction between the reductive titanium (III) precursor and graphite oxide (GO), and a series of TiO2/RGO composites with various TiO2 phase compositions were obtained. In all the titania/RGO composites, the TiO2 nanoparticles were uniformly distributed on the surface of the RGO. The TiO2 consisted of anatase phase particles in the form of square-plates with edges less than 10 nm and the rutile phase nanorods in diameters less than 10 nm. The performances of the as-prepared TiO2/RGO composites were investigated on catalytically degrading phenol under visible light irradiation. The TiO2/RGO composites can effectively degrade phenol under visible light irradiation, and the phase composition of TiO2 in the composites significantly influences the activities of these catalysts.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 2007, 6: 183–191

    Article  CAS  Google Scholar 

  2. 2

    Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS. Graphene-based ultracapacitors. Nano Lett, 2008, 8: 3498–3502

    Article  CAS  Google Scholar 

  3. 3

    Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK, Novoselov KS. Graphene-based liquid crystal device. Nano Lett, 2008, 8: 1704–1708

    Article  Google Scholar 

  4. 4

    Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia M, Craighead HG, McEuen PL. Electromechanical resonators from graphene sheets. Science, 2007, 315: 490–493

    Article  CAS  Google Scholar 

  5. 5

    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphene-based composite materials. Nature, 2006, 442: 282–286

    Article  CAS  Google Scholar 

  6. 6

    Petit C, Bandosz TJ. Graphite oxide/polyoxometalate nanocomposites as adsorbents of ammonia. J Phys Chem C, 2009, 113: 3800–3809

    Article  CAS  Google Scholar 

  7. 7

    Xu C, Wang X, Zhu JW, Yang XJ, Lu L. Deposition of Co3O4 nanoparticles onto exfoliated graphite oxide sheets. J Mater Chem, 2008, 18: 5625–5629

    Article  CAS  Google Scholar 

  8. 8

    Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mülhaupt R. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. J Am Chem Soc, 2009, 131: 8262–8270

    Article  CAS  Google Scholar 

  9. 9

    Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS. Preparation and characterization of graphene oxide paper. Nature, 2007, 448: 457–460

    Article  CAS  Google Scholar 

  10. 10

    Manga KK, Zhou Y, Yan YL, Loh KP. Multilayer hybrid films consisting of alternating graphene and titania nanosheets withultrafast electron transfer and photoconversion properties. Adv Funct Mater, 2009, 19: 3638–3643

    Article  CAS  Google Scholar 

  11. 11

    Akhavan O, Ghaderi E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J Phys Chem C, 2009, 113: 20214–20220

    Article  CAS  Google Scholar 

  12. 12

    Lightcap IV, Kosel TH, Kamat PV. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide. Nano Lett, 2010, 10: 577–583

    Article  CAS  Google Scholar 

  13. 13

    Wang DH, Choi DW, Li J, Yang ZG, Nie ZM, Kou Y, Hu DH, Wang CM, Saraf LV, Zhang JG, Aksay IA, Liu J. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano, 2009, 3: 907–914

    Article  CAS  Google Scholar 

  14. 14

    Zhang H, Lv XJ, Li YM, Wang Y, Li JH. P25-graphene composite as a high performance photocatalyst. ACS Nano, 2010, 4: 380–386

    Article  CAS  Google Scholar 

  15. 15

    Williams G, Seger B, Kamat PV. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2008, 2: 1487–1491

    Article  CAS  Google Scholar 

  16. 16

    Lambert TN, Chavez CA, Hernandez-Sanchez B, Lu P, Bell NS, Ambrosini A, Friedman T, Boyle TJ, Wheeler DR, Huber DL. Synthesis and characterization of titania graphene nanocomposites. J Phys Chem C, 2009, 113: 19812–19823

    Article  CAS  Google Scholar 

  17. 17

    Li B, Zhang XT, Li XH, Wang L, Han RY, Liu BB, Zheng WT, Li XL, Liu YC. Photo-assisted preparation and patterning of large-area reduced graphene oxide-TiO2 conductive thin film. Chem Commun, 2010, 46: 3499–3501

    Article  CAS  Google Scholar 

  18. 18

    Zhu CZ, Guo SJ, Wang P, Li Y, Fang YX, Zhai M, Dong SJ. One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets. Chem Commun, 2010, 46: 7148–7150

    Article  CAS  Google Scholar 

  19. 19

    Petit C, Bandosz TJ, Graphite oxide/polyoxometalate nanocomposites as adsorbents of ammonia. J Phys Chem C, 2009, 113: 3800–3809

    Article  CAS  Google Scholar 

  20. 20

    Xu C, Wang X, Zhu JW, Yang XJ, Lu L. Deposition of Co3O4 nanoparticles onto exfoliated graphite oxide sheets. J Mater Chem, 2008, 18: 5625–5629

    Article  CAS  Google Scholar 

  21. 21

    Williams G, Kamat PV. Graphene-semiconductor nanocomposites: Excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir, 2009, 25: 13869–13873

    Article  CAS  Google Scholar 

  22. 22

    Paek SM, Yoo EJ, Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett, 2009, 9: 72–75

    Article  CAS  Google Scholar 

  23. 23

    Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38

    Article  CAS  Google Scholar 

  24. 24

    Hagfeldt A, Grätzel M. Light-induced redox reactions in nanocrystalline systems. Chem Rev, 1995, 95: 49–68

    Article  CAS  Google Scholar 

  25. 25

    Linsebigler AL, Lu GQ, Yates JT. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem Rev, 1995, 95: 735–758

    Article  CAS  Google Scholar 

  26. 26

    Grätzel M. Photoelectrochemical cells. Nature, 2001, 414: 338–344

    Article  Google Scholar 

  27. 27

    Chen XB, Mao SS. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem Rev, 2007, 107: 2891–2959

    Article  CAS  Google Scholar 

  28. 28

    Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 1958, 89: 1339

    Article  Google Scholar 

  29. 29

    Xie Y, Ding KL, Liu ZM, Tao RT, Sun ZY, Zhang HY, An GM. In situ controllable loading of ultrafine noble metal particles on titania. J Am Chem Soc, 2009, 131: 6648–6649

    Article  CAS  Google Scholar 

  30. 30

    Lee KY, Kim M, Hahn J, Suh JS, Lee I, Kim K, Han SW. Assembly of metal nanoparticle-carbon nanotube composite materials at the liquid/ liquid interface. Langmuir, 2006, 22: 1817–1821

    Article  CAS  Google Scholar 

  31. 31

    Li J, Tang SB, Lu L, Zeng HC. Preparation of nanocomposites of metals, metal Oxides, and carbon nanotubes via self-assembly. J Am Chem Soc, 2007, 129: 9401–9409

    Article  CAS  Google Scholar 

  32. 32

    Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I. Graphite oxide: Chemical reduction to graphite and surface modification withprimary aliphatic amines and amino acids. Langmuir, 2003, 19: 6050–6055

    Article  CAS  Google Scholar 

  33. 33

    Zhang JL, Yang HJ, Shen GX, Chen P, Zhang JY, Guo SW. Reduction of graphene oxide via L-ascorbic acid. Chem Commun, 2010, 46: 1112–1114

    Article  CAS  Google Scholar 

  34. 34

    Zangmeister CD. Preparation and evaluation of graphite oxide reduced at 220°C. Chem Mater, 2010, 22: 5625–5629

    Article  CAS  Google Scholar 

  35. 35

    He HY, Riedl T, Lerf A, Klinowski J. Solid-state NMR studies of the structure of graphite oxide. J Phys Chem, 1996, 100: 19954–19958

    Article  CAS  Google Scholar 

  36. 36

    Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett, 2008, 8: 36–41

    Article  CAS  Google Scholar 

  37. 37

    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45: 1558–1565

    Article  CAS  Google Scholar 

  38. 38

    An GM, Ma WH, Sun ZY, Liu ZM, Han BX, Miao SD, Miao ZJ, Ding KL. Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon, 2007, 45: 1795–1801

    Article  CAS  Google Scholar 

  39. 39

    Wang WD, Serp P, Kalck P, Faria JL. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method. J Mol Catal A: Chem, 2005, 235: 194–199

    Article  CAS  Google Scholar 

  40. 40

    Zhao L, Chen XF, Wang XC, Zhang YJ, Wei W, Sun YH, Antonietti M, Titirici M. One-step solvothermal synthesis of a Carbon@TiO2 dyade structure effectively promoting visible-light photocatalysis. Adv Mater, 2010, 22: 3317–3321

    Article  CAS  Google Scholar 

  41. 41

    Du AJ, Ng YH, Bell NJ, Zhu ZH, Amal R, Smith SC. Hybrid graphene/titania nanocomposite: Interface charge transfer, hole doping, and sensitization for visible light response. J Phys Chem Lett, 2011, 2: 894–899

    Article  CAS  Google Scholar 

  42. 42

    Xiong ZG, Zhang LL, Ma JZ, Zhao XS. Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation. Chem Commun, 2010, 46: 6099–6101

    Article  CAS  Google Scholar 

  43. 43

    Xiong ZG, Zhang LL, Zhao XS. Visible-light-induced dye degradation over copper-modified reduced graphene oxide. Chem Eur J, 2011, 17: 2428–2434

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to ZhiMin Liu.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhao, Y., Xie, Y., Sun, Z. et al. Controllable synthesis of titania/reduced graphite oxide nanocomposites with various titania phase compositions and their photocatalytic performance. Sci. China Chem. 55, 1294–1302 (2012). https://doi.org/10.1007/s11426-012-4637-3

Download citation

Keywords

  • titania
  • phase control
  • reduced graphite oxide
  • composite