Science China Chemistry

, Volume 55, Issue 6, pp 867–882 | Cite as

An introduction to molecular spintronics

  • ShangDa Jiang
  • Karin Goß
  • Christian Cervetti
  • Lapo Bogani
Reviews Special Topic · Molecular Magnetism


We review the progress and future possibilities in the emerging area of molecular spintronics. We first provide an overview of the different transport regimes in which electronic nanodevices can operate, then briefly overview the important characteristics of molecular magnetic materials that can be useful for application in spintronics and we eventually present several schemes to include such systems into spintronic nanodevices. We hightlight the importance of a chemical approach to the area, and in the last section we showcase some approaches to the creation of hybrids made of carbon nanostructures and molecular magnets, which are gaining increasing attention.


carbon nanostructures molecular spintronics molecular magnetism quantum transport electronic nanodevices 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nitzan A, Ratner MA. Electron transport in molecular wire junctions. Science, 2003, 300: 1384CrossRefGoogle Scholar
  2. 2.
    Tao NJ. Electron transport in molecular junctions. Nat Nanotechnol, 2006, 1: 173CrossRefGoogle Scholar
  3. 3.
    Stipe BC, Rezaei MA, Ho W. Single-molecule vibrational spectroscopy and microscopy. Science, 1998, 280(5370): 1732–1735CrossRefGoogle Scholar
  4. 4.
    Gimzewski JK, Joachim C. Nanoscale science of single molecules using local probes. Science, 1999, 283(5408): 1683–1688CrossRefGoogle Scholar
  5. 5.
    Park H, Lim AKL, Alivisatos AP, Park J, McEuen PL. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl Phys Lett, 1999, 75: 301CrossRefGoogle Scholar
  6. 6.
    Champagne AR, Pasupathy AN, Ralph DC. Mechanically adjustable and electrically gated single-molecule transistors. Nano Lett, 2005, 5(2): 305–308CrossRefGoogle Scholar
  7. 7.
    Osorio EA, Bjørnholm T, Lehn JM, Ruben M, van der Zant HSJ. Single-molecule transport in three-terminal devices. J Phys: Condens Matter, 2008, 20: 374121CrossRefGoogle Scholar
  8. 8.
    Bockrath M, Cobden DH, McEuen PL, Chopra NG, Zettl A, Thess A, Smalley RE. Single-electron transport in ropes of carbon nanotubes. Science, 1997, 275(5308): 1922–1925CrossRefGoogle Scholar
  9. 9.
    Tans SJ, Devoret MH, Dai HJ, Thess A, Smalley RE, Geerligs LJ, Dekker C. Individual single-wall carbon nanotubes as quantum wires. Nature, 1997, 386: 474CrossRefGoogle Scholar
  10. 10.
    Ponomarenko LA, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim AK. Chaotic dirac billiard in graphene quantum dots. Science, 2008, 320: 356CrossRefGoogle Scholar
  11. 11.
    Stampfer C, Schurtenberger E, Molitor F, Guettinger J, Ihn T, Ensslin K. Tunable graphene single electron transistor. Nano Lett, 2008, 8: 2378CrossRefGoogle Scholar
  12. 12.
    Kastner MA. Artificial atoms. Physics Today, 1993, 46: 24CrossRefGoogle Scholar
  13. 13.
    Kouwenhoven LP, Austing DG, Tarucha S. Few-electron quantum dots. Rep Prog Phys, 2001, 64: 701CrossRefGoogle Scholar
  14. 14.
    Hanson R, Kouwenhoven LP, Petta JR, Tarucha S, Vandersypen LMK. Spins in few-electron quantum dots. Rev Mod Phys, 2007, 79: 1217CrossRefGoogle Scholar
  15. 15.
    Kouwenhoven LP, Marcus CM, McEuen PL, Tarucha S, Westervelt RM, Wingreen NS. Mesoscopic Electron Transport. In Sohn LL, Kouwenhoven LP, Schön G, Eds. Kluwer Academic Publishers, 1997Google Scholar
  16. 16.
    Carlin LR. Magnetochemistry. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, 1986CrossRefGoogle Scholar
  17. 17.
    Kahn O. Molecular Magnetism. New York, Weinheim: VCH Publishers, 1993Google Scholar
  18. 18.
    Miller JS. Magnetism: Molecules to Materials. Weinheim: WILEY-VCH, 2001–2004, 1–5CrossRefGoogle Scholar
  19. 19.
    Boyd PDW, Li QY, Vincent JB, Folting K, Chang HR, Streib WE, Huffman JC, Christou G, Hendrickson DN. Potential building-blocks for molecular ferromagnets-[Mn12O12(O2CPh)16(H2O)4] with a S = 14 ground-state. J Am Chem Soc, 1988, 110(25): 8537–8539CrossRefGoogle Scholar
  20. 20.
    Sessoli R, Tsai HL, Schake AR, Wang SY, Vincent JB, Folting K, Gatteschi D, Christou G, Hendrickson DN. High-spin molecules-[Mn12O12(O2CR)16(H2O)4]. J Am Chem Soc, 1993, 115(5): 1804–1816CrossRefGoogle Scholar
  21. 21.
    Sessoli R, Gatteschi D, Caneschi A, Novak MA. Magnetic bistability in a metal-ion cluster. Nature, 1993, 365(6442): 141–143CrossRefGoogle Scholar
  22. 22.
    Friedman JR, Sarachik MP, Hernandez JM, Zhang XX, Tejada J, Molins E, Ziolo R. Effect of a transverse magnetic field on resonant magnetization tunneling in high-spin molecules. J Appl Phys, 1997, 1(8): 3978–3980CrossRefGoogle Scholar
  23. 23.
    Friedman JR, Sarachik MP, Tejada J, Ziolo R. Macroscopic measurement of resonant magnetization tunneling in high-spin molecules. Phys Rev Lett, 1996, 76(20): 3830–3833CrossRefGoogle Scholar
  24. 24.
    Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R, Barbara B. Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature, 1996, 383(6596): 145–147CrossRefGoogle Scholar
  25. 25.
    Barbara B, Thomas L, Lionti F, Chiorescu I, Sulpice A. Macroscopic quantum tunneling in molecular magnets. J Mag Mag Mater, 1999, 200(1–3): 167–181CrossRefGoogle Scholar
  26. 26.
    Wernsdorfer W. Quantum dynamics in molecular nanomagnets. Comptes Rendus Chimie, 2008, 11(10): 1086–1109CrossRefGoogle Scholar
  27. 27.
    Wernsdorfer W, Sessoli R. Quantum phase interference and parity effects in magnetic molecular clusters. Science, 1999, 284(5411): 133–135CrossRefGoogle Scholar
  28. 28.
    Jones JA. Quantum computing-Fast searches with nuclear magnetic resonance computers. Science, 1998, 280(5361): 229–229CrossRefGoogle Scholar
  29. 29.
    Ralph DC, Black CT, Tinkham M. Spectroscopic measurements of discrete electronic states in single metal particles. Phys Rev Lett, 1995, 74: 3241CrossRefGoogle Scholar
  30. 30.
    Petta JR, Ralph DC. Studies of spin-orbit scattering in noble-metal nanoparticles using energy-level tunneling spectroscopy. Phys Rev Lett, 2001, 87: 266801CrossRefGoogle Scholar
  31. 31.
    Johnson AT, Kouwenhoven LP, de Jong W, van der Vaart NC, Harmans CJPM, Foxon CT. Zero-dimensional states and single electron charging in quantum dots. Phys Rev Lett, 1992, 69: 1592CrossRefGoogle Scholar
  32. 32.
    Tarucha S, Austing DG, Honda T, van der Hage RJ, Kouwenhoven LP. Shell filling and spin effects in a few electron quantum dot. Phys Rev Lett, 1996, 77: 3613CrossRefGoogle Scholar
  33. 33.
    Ashoori RC. Electrons in artificial atoms. Nature, 1996, 379: 413CrossRefGoogle Scholar
  34. 34.
    Bockrath M, Cobden DH, McEuen PL, Chopra NG, Zettl A, Thess A, Smalley RE. Single-electron transport in ropes of carbon nanotubes. Science, 1997, 275: 1922CrossRefGoogle Scholar
  35. 35.
    Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruna HD, McEuen PL, Ralph DC. Coulomb blockade and the Kondo effect in single-atom transistors. Nature, 2002, 417: 722CrossRefGoogle Scholar
  36. 36.
    Osorio EA, O’Neill K, Wegewijs MR, Stuhr-Hansen N, Paaske J, Bjørnholm T, van der Zant HSJ. Electronic excitations of a single molecule contacted in a three-terminal configuration. Nano Lett, 2007, 7: 3336CrossRefGoogle Scholar
  37. 37.
    Mason N, Biercuk MJ, Marcus CM. Local gate control of a carbon nanotube double quantum dot. Science, 2004, 303: 655CrossRefGoogle Scholar
  38. 38.
    Molitor F, Droscher S, Guttinger J, Jacobsen A, Stampfer C, Ihn T, Ensslin K. Transport through graphene double dots. Appl Phys Lett, 2009, 94(22): 222107CrossRefGoogle Scholar
  39. 39.
    Steele GA, Gotz G, Kouwenhoven LP. Tunable few-electron double quantum dots and Klein tunnelling in ultraclean carbon nanotubes. Nat Nanotechnol, 2009, 4: 363CrossRefGoogle Scholar
  40. 40.
    Goldhaber-Gordon D, Shtrikman H, Mahalu D, Abusch-Magder D, Meirav U, Kastner MA. Kondo effect in a single-electron transistor. Nature, 1998, 391(6663): 156–159CrossRefGoogle Scholar
  41. 41.
    Nygard J, Cobden DH, Lindelof PE. Kondo physics in carbon nanotubes. Nature, 2000, 408: 342–346CrossRefGoogle Scholar
  42. 42.
    Beenakker CWJ. Theory of coulomb-blockade oscillations in the conductance of a quantum dot. Phys Rev B, 1991, 44: 1646CrossRefGoogle Scholar
  43. 43.
    van Houten H, Beenakker CWJ, Staring AAM. Single Charge Tunneling. In Grabert H, Devoret MH, Eds. New York: Plenum, 1992, 294Google Scholar
  44. 44.
    Winpenny RJP. Single-Molecule Magnets and Related Phenomena. In P., W. R. J., Ed. Berlin: Structure & Bonding, 2006, 122CrossRefGoogle Scholar
  45. 45.
    Gatteschi D, Sessoli R, Villain J. Molecular Nanomagnets. New York: Oxford University Press, 2006CrossRefGoogle Scholar
  46. 46.
    Lis T. Preparation, structure, and magnetic-properties of a dodecanuclear mixed-valence manganese carboxylate. Acta Cryst B, 1980, 36(Sep): 2042–2046CrossRefGoogle Scholar
  47. 47.
    Gatteschi D, Sessoli R. Quantum tunneling of magnetization and related phenomena in molecular materials. Angew Chem Int Ed, 2003, 42: 268–297CrossRefGoogle Scholar
  48. 48.
    Caneschi A, Gatteschi D, Sessoli R, Barra AL, Brunel LC, Guillot M. Alternating-current susceptibility, high-field magnetization, and millimeter band epr evidence for a ground S = 10 state in [Mn12O12(CH3COO)16(H2O)4]·2CH3COOH·4H2O. J Am Chem Soc, 1991, 113(15): 5873–5874CrossRefGoogle Scholar
  49. 49.
    Tasiopoulos AJ, Vinslava A, Wernsdorfer W, Abboud KA, Christou G. Giant single-molecule magnets: A {Mn84} torus and its supramolecular nanotubes. Angew Chem Int Ed, 2004, 43(16): 2117–2121CrossRefGoogle Scholar
  50. 50.
    Ako AM, Hewitt IJ, Mereacre V, Clerac R, Wernsdorfer W, Anson CE, Powell AK. A ferromagnetically coupled Mn19 aggregate with a record S = 83/2 ground spin state. Angew Chem Int Ed, 2006, 45(30): 4926–4929CrossRefGoogle Scholar
  51. 51.
    Mills DP, Moro F, McMaster J, van Slageren J, Lewis W, Blake AJ, Liddle ST. A delocalized arene-bridged diuranium single-molecule magnet. Nat Chem, 2011, 3(6): 454–460Google Scholar
  52. 52.
    Abragam A, Bleaney B. Electron Paramagnetic Resonance of Transion Ions. London: Oxford University Press, 1970Google Scholar
  53. 53.
    Kahle S, Deng Z, Malinowski N, Tonnoir C, Forment-Aliaga A, Thontasen N, Rinke G, Le D, Turkowski V, Rahman TS, Rauschenbach S, Ternes M, Kern K. The quantum magnetism of individual manganese-12-acetate molecular magnets anchored at surfaces. Nano Lett, 2011, 12(1): 518–521CrossRefGoogle Scholar
  54. 54.
    Heersche HB, de Groot Z, Folk JA, van der Zant HSJ, Romeike C, Wegewijs MR, Zobbi L, Barreca D, Tondello E, Cornia A. Electron transport through single Mn-12 molecular magnets. Phys Rev Lett, 2006, 96: 206801CrossRefGoogle Scholar
  55. 55.
    Kouwenhoven LP, Marcus CM, McEuen PL, Tarucha S, Westervelt RM, Wingreen NS. Electron transport in quantum dots. In Mesoscopic Electron Transport, Sohn LL, Kouwenhoven LP, Schäon G, Eds. Kluwer, 1997, 105–214Google Scholar
  56. 56.
    Chakov NE, Soler M, Wernsdorfer W, Abboud KA, Christou G. Single-molecule magnets: Structural characterization, magnetic properties, and F-19 NMR spectroscopy of a Mn-12 family spanning three oxidation levels. Inorg Chem, 2005, 44(15): 5304–5321CrossRefGoogle Scholar
  57. 57.
    Jo M-H, Grose JE, Baheti K, Deshmukh MM, Sokol JJ, Rumberger EM, Hendrickson DN, Long JR, Park H, Ralph DC. Signatures of molecular magnetism in single-molecule transport spectroscopy. Nano Lett, 2006, 6(9): 2014–2020CrossRefGoogle Scholar
  58. 58.
    Osorio EA, Moth-Poulsen K, van der Zant HSJ, Paaske J, Hedegrard P, Flensberg K, Bendix J, Bjørnholm T. Electrical manipulation of spin states in a single electrostatically gated transition-metal complex. Nano Lett, 2010, 10: 105CrossRefGoogle Scholar
  59. 59.
    Zyazin AS, van den Berg JWG, Osorio EA, van der Zant HSJ, Konstantinidis NP, Leijnse M, Wegewijs MR, May F, Hofstetter W, Danieli C, Cornia A. Electric field controlled magnetic anisotropy in a single molecule. Nano Lett, 2010, 10(9): 3307–3311CrossRefGoogle Scholar
  60. 60.
    Elste F, Timm C. Cotunneling and nonequilibrium magnetization in magnetic molecular monolayers. Phys Rev B, 2007, 75(19): 195341–195348CrossRefGoogle Scholar
  61. 61.
    Timm C. Tunneling through magnetic molecules with arbitrary angle between easy axis and magnetic field. Phys Rev B, 2007, 76(1): 014421–014430CrossRefGoogle Scholar
  62. 62.
    Romeike C, Wegewijs MR, Ruben M, Wenzel W, Schoeller H. Charge-switchable molecular magnet and spin blockade of tunneling. Phys Rev B, 2007, 75(6): 064404–064411CrossRefGoogle Scholar
  63. 63.
    Liang WJ, Shores MP, Bockrath M, Long JR, Park H. Kondo resonance in a single-molecule transistor. Nature, 2002, 417(6890): 725–729CrossRefGoogle Scholar
  64. 64.
    Shores MP, Sokol JJ, Long JR. Nickel(II)-molybdenum(III)-cyanide clusters: Synthesis and magnetic behavior of species incorporating [(Me3TACN)Mo(CN)3]. J Am Chem Soc, 2002, 124(10): 2279–2292CrossRefGoogle Scholar
  65. 65.
    Romeike C, Wegewijs MR, Hofstetter W, Schoeller H. Kondo-transport spectroscopy of single molecule magnets. Phys Rev Lett, 2006, 97(20): 206601–206604CrossRefGoogle Scholar
  66. 66.
    Romeike C, Wegewijs MR, Hofstetter W, Schoeller H. Quantum-tunneling-induced Kondo effect in single molecular magnets. Phys Rev Lett, 2006, 96(19): 196601–196604CrossRefGoogle Scholar
  67. 67.
    Leuenberger MN, Mucciolo ER. Berry-phase oscillations of the kondo effect in single-molecule magnets. Phys Rev Lett, 2006, 97(12): 126601–126604CrossRefGoogle Scholar
  68. 68.
    Shimada H, Ono K, Ootuka Y. Driving the single-electron device with a magnetic field (invited). J Appl Phys, 2003, 93(10): 8259–8264CrossRefGoogle Scholar
  69. 69.
    Datta S, Marty L, Cleuziou JP, Tilmaciu C, Soula B, Flahaut E, Wernsdorfer W. Magneto-coulomb effect in carbon nanotube quantum dots filled with magnetic nanoparticles. Phys Rev Lett, 2011, 107(18): 186804CrossRefGoogle Scholar
  70. 70.
    Cleuziou JP, Wernsdorfer W, Bouchiat V, Ondarcuhu T, Monthioux M. Carbon nanotube superconducting quantum interference device. Nat Nanotechnol, 2006, 1(1): 53–59CrossRefGoogle Scholar
  71. 71.
    Maurand R, Meng T, Bonet E, Florens S, Marty L, Wernsdorfer W. First-order 0-π quantum phase transition in the kondo regime of a superconducting carbon-nanotube quantum dot. Phys Rev X, 2012, 2(1): 011009CrossRefGoogle Scholar
  72. 72.
    Urdampilleta M, Klyatskaya S, Cleuziou JP, Ruben M, Wernsdorfer W. Supramolecular spin valves. Nat Mater, 2011, 10(7): 502–506CrossRefGoogle Scholar
  73. 73.
    Candini A, Klyatskaya S, Ruben M, Wernsdorfer W, Affronte M. Graphene spintronic devices with molecular nanomagnets. Nano Lett, 2011, 11(7): 2634–2639CrossRefGoogle Scholar
  74. 74.
    Steele GA, Hüttel AK, Witkamp B, Poot M, Meerwaldt HB, Kouwenhoven LP, van der Zant HSJ. Strong coupling between single-electron tunneling and nanomechanical motion. Science, 2009, 325: 1103CrossRefGoogle Scholar
  75. 75.
    Bogani L, Santandrea F. in preparationGoogle Scholar
  76. 76.
    Bogani L, Wernsdorfer W. A perspective on combining molecular nanomagnets and carbon nanotube electronics. Inorg Chim Acta, 2008, 361(14–15): 3807–3819CrossRefGoogle Scholar
  77. 77.
    Loiseau A, Launois P, Petit P, Roche S, Salvetat J-P. Understanding Carbon Nanotubes: from Basics to Application, Lecture Notes in Physics Series. Heidelberg: Springer, 2006Google Scholar
  78. 78.
    Rotkin SV, Subramoney S. Applied Physics of Carbon Nanotubes: Fundamentals of Theory, Optics and Transport Devices. Heidergerg: Springer, 2005CrossRefGoogle Scholar
  79. 79.
    Dresselhaus MS, Dresselhaus G, Avouris P. Carbon Nanotubes: Synthesis, Structure, Properteis and Applications. Heiderberg: Springer, 2001CrossRefGoogle Scholar
  80. 80.
    Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes-the route toward applications. Science, 2002, 297(5582): 787–792CrossRefGoogle Scholar
  81. 81.
    Avouris P. Molecular electronics with carbon nanotubes. Accounts Chem Res, 2002, 35(12): 1026–1034CrossRefGoogle Scholar
  82. 82.
    Charlier JC, Blase X, Roche S. Electronic and transport properties of nanotubes. Rev Mod Phys, 2007, 79(2): 677–732CrossRefGoogle Scholar
  83. 83.
    Sun YP, Fu KF, Lin Y, Huang WJ. Functionalized carbon nanotubes: Properties and applications. Accounts Chem Res, 2002, 35(12): 1096–1104CrossRefGoogle Scholar
  84. 84.
    Balasubramanian K, Burghard M. Chemically functionalized carbon nanotubes. Small, 2005, 1(2): 180–192CrossRefGoogle Scholar
  85. 85.
    Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. Electronic-structure of chiral graphene tubules. Appl Phys Lett, 1992, 60(18): 2204–2206CrossRefGoogle Scholar
  86. 86.
    Tans SJ, Devoret MH, Dai HJ, Thess A, Smalley RE, Geerligs LJ, Dekker C. Individual single-wall carbon nanotubes as quantum wires. Nature, 1997, 386(6624): 474–477CrossRefGoogle Scholar
  87. 87.
    Thess A, Lee R, Nikolaev P, Dai HJ, Petit P, Robert J, Xu CH, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273(5274): 483–487CrossRefGoogle Scholar
  88. 88.
    Kane CL, Mele EJ. Size, shape, and low energy electronic structure of carbon nanotubes. Phys Rev Lett, 1997, 78(10): 1932–1935CrossRefGoogle Scholar
  89. 89.
    Ouyang M, Huang JL, Cheung CL, Lieber CM. Energy gaps in “metallic” single-walled carbon nanotubes. Science, 2001, 292(5517): 702–705CrossRefGoogle Scholar
  90. 90.
    Heyd R, Charlier A, McRae E. Uniaxial-stress effects on the electronic properties of carbon nanotubes. Phys Rev B, 1997, 55(11): 6820–6824CrossRefGoogle Scholar
  91. 91.
    Minot ED, Yaish Y, Sazonova V, Park JY, Brink M, McEuen PL. Tuning carbon nanotube band gaps with strain. Phys Rev Lett, 2003, 90(15): 156404–156407CrossRefGoogle Scholar
  92. 92.
    Yang L, Han J. Electronic structure of deformed carbon nanotubes. Phys Rev Lett, 2000, 85(1): 154–157CrossRefGoogle Scholar
  93. 93.
    Kwon YK, Tomanek D. Electronic and structural properties of multiwall carbon nanotubes. Phys Rev B, 1998, 58(24): 16001–16004CrossRefGoogle Scholar
  94. 94.
    Misewich JA, Martel R, Avouris P, Tsang JC, Heinze S, Tersoff J. Electrically induced optical emission from a carbon nanotube FET. Science, 2003, 300(5620): 783–786CrossRefGoogle Scholar
  95. 95.
    Bogani L, Wernsdorfer W. Molecular spintronics using single-molecule magnets. Nature Mater, 2008, 7(3): 179–186CrossRefGoogle Scholar
  96. 96.
    Dei A. Photomagnetic effects in polycyanometallate compounds: An intriguing future chemically based technology? Angew Chem Int Ed, 2005, 44(8): 1160–1163CrossRefGoogle Scholar
  97. 97.
    Carbonera C, Dei A, Letard JF, Sangregorio C, Sorace L. Thermally and light-induced valence tautomeric transition in a dinuclear cobalt-tetraoxolene complex. Angew Chem Int Ed, 2004, 43(24): 3136–3138CrossRefGoogle Scholar
  98. 98.
    Gutlich P, Dei A. Valence tautomeric interconversion in transition metal 1,2-benzoquinone complexes. Angew Chem Int Ed, 1997, 36(24): 2734–2736CrossRefGoogle Scholar
  99. 99.
    Adams DM, Dei A, Rheingold AL, Hendrickson DN. Controlling valence tautomerism of cobalt complexes containing the benzosemiquinone anion as ligand. Angew Chem Int Ed, 1993, 32(6): 880–882CrossRefGoogle Scholar
  100. 100.
    Giraud R, Wernsdorfer W, Tkachuk AM, Mailly D, Barbara B. Nuclear spin driven quantum relaxation in LiY0.998Ho0.002F4. Phys Rev Lett, 2001, 87(5): 057203CrossRefGoogle Scholar
  101. 101.
    Ishikawa N, Sugita M, Wernsdorfer W. Quantum tunneling of magnetization in lanthanide single-molecule magnets: Bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosium anions. Angew Chem Int Ed, 2005, 44(19): 2931–2935CrossRefGoogle Scholar
  102. 102.
    Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y. Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J Am Chem Soc, 2003, 125(29): 8694–8695CrossRefGoogle Scholar
  103. 103.
    Ishikawa N, Sugita M, Wernsdorfer W. Nuclear spin driven quantum tunneling of magnetization in a new lanthanide single-molecule magnet: Bis(phthalocyaninato)holmium anion. J Am Chem Soc, 2005, 127(11): 3650–3651CrossRefGoogle Scholar
  104. 104.
    Britz DA, Khlobystov AN. Noncovalent interactions of molecules with single walled carbon nanotubes. Chem Soc Rev, 2006, 35(7): 637–659CrossRefGoogle Scholar
  105. 105.
    Liu Z, Sun XM, Nakayama-Ratchford N, Dai HJ. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. Acs Nano, 2007, 1(1): 50–56CrossRefGoogle Scholar
  106. 106.
    Hirsch A. Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed, 2002, 41(11: 1853–1859CrossRefGoogle Scholar
  107. 107.
    Charlier JC. Defects in carbon nanotubes. Acc Chem Res, 2002, 35(12): 1063–1069CrossRefGoogle Scholar
  108. 108.
    Kim W, Javey A, Vermesh O, Wang O, Li YM, Dai HJ. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett, 2003, 3(2): 193–198CrossRefGoogle Scholar
  109. 109.
    Bogani L, Danieli C, Biavardi E, Bendiab N, Barra AL, Dalcanale E, Wernsdorfer W, Cornia A. Single-molecule-magnet carbon-nanotube hybrids. Angew Chem Int Ed, 2009, 48(4): 746–750CrossRefGoogle Scholar
  110. 110.
    Bogani L, Maurand R, Marty L, Sangregorio C, Altavilla C, Wernsdorfer W. Effect of sequential grafting of magnetic nanop-articles onto metallic and semiconducting carbon-nanotube devices: towards self-assembled multi-dots. J Mater Chem, 2010, 20(11): 2099–2107CrossRefGoogle Scholar
  111. 111.
    Bogani L, Caneschi A, Fedi M, Gatteschi D, Massi M, Novak MA, Pini MG, Rettori A, Sessoli R, Vindigni A. Finite-size effects in single chain magnets: An experimental and theoretical study. Phys Rev Lett, 2004, 92(20): 207204–207207CrossRefGoogle Scholar
  112. 112.
    Bogani L, Sessoli R, Pini MG, Rettori A, Novak MA, Rosa P, Massi M, Fedi ME, Giuntini L, Caneschi A, Gatteschi D. Finite-size effects on the static properties of a single-chain magnet. Phys Rev B, 2005, 72(6): 064406–064415CrossRefGoogle Scholar
  113. 113.
    Kyatskaya S, Galan-Mascaros JR, Bogani L, Hennrich F, Kappes M, Wernsdorfer W, Ruben M. Anchoring of rare-earth-based single-molecule magnets on single-walled carbon nanotubes. J Am Chem Soc, 2009, 131(42): 15143–15151CrossRefGoogle Scholar
  114. 114.
    Accorsi G, Armaroli N, Parisini A, Meneghetti M, Marega R, Prato M, Bonifazi D. Wet adsorption of a luminescent Eu-III complex on carbon nanotubes sidewalls. Adv Funct Mater, 2007, 17(15): 2975–2982CrossRefGoogle Scholar
  115. 115.
    Raghuveer MS, Kumar A, Frederick MJ, Louie GP, Ganesan PG, Ramanath G. Site-selective functionalization of carbon nanotubes. Adv Mater, 2006, 18(5): 547–552CrossRefGoogle Scholar
  116. 116.
    Koshio A, Yudasaka M, Zhang M, Iijima S. A simple way to chemically react single-wall carbon nanotubes with organic materials using ultrasonication. Nano Lett, 2001, 1(7): 361–363CrossRefGoogle Scholar
  117. 117.
    Wildgoose GG, Banks CE, Compton RG. Metal nanopartictes and related materials supported on carbon nanotubes: Methods and applications. Small, 2006, 2(2): 182–193CrossRefGoogle Scholar
  118. 118.
    Jiang KY, Eitan A, Schadler LS, Ajayan PM, Siegel RW, Grobert N, Mayne M, Reyes-Reyes M, Terrones H, Terrones M. Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes. Nano Lett, 2003, 3(3): 275–277CrossRefGoogle Scholar
  119. 119.
    Coronado E, Forment-Aliaga A, Romero FM, Corradini V, Biagi R, De Renzi V, Gambardella A, del Pennino U. Isolated Mn-12 single-molecule magnets grafted on gold surfaces via electrostatic interactions. Inorg Chem, 2005, 44(22): 7693–7695CrossRefGoogle Scholar
  120. 120.
    Coronado E, Forment-Aliaga A, Gaita-Arino A, Gimenez-Saiz C, Romero FM, Wernsdorfer W. Polycationic Mn12 single-molecule magnets as electron reservoirs with S > 10 ground states. Angew Chem Int Ed, 2004, 43(45): 6152–6156CrossRefGoogle Scholar
  121. 121.
    Banerjee S, Wong SS. Structural characterization, optical properties, and improved solubility of carbon nanotubes functionalized with Wilkinson’s catalyst. J Am Chem Soc, 2002, 124(30): 8940–8948CrossRefGoogle Scholar
  122. 122.
    Banerjee S, Wong SS. Functionalization of carbon nanotubes with a metal-containing molecular complex. Nano Lett, 2002, 2(1): 49–53CrossRefGoogle Scholar
  123. 123.
    Lopes M, Candini A, Urdampilleta M, Reserbat-Plantey A, Bellini V, Klyatskaya S, Marty Lt, Ruben M, Affronte M, Wernsdorfer W, Bendiab N. Surface-enhanced raman signal for terbium single-molecule magnets grafted on graphene. Acs Nano, 2010, 4(12): 7531–7537CrossRefGoogle Scholar
  124. 124.
    Jiang SD, Wang BW, Su G, Wang ZM, Gao S. A mononuclear dysprosium complex featuring single-molecule-magnet behavior. Angew Chem Int Ed, 2010, 49(41): 7448–7451CrossRefGoogle Scholar
  125. 125.
    Jiang SD, Wang BW, Sun HL, Wang ZM, Gao S. An organometallic single-ion magnet. J Am Chem Soc, 2011, 133(13): 4730–4733CrossRefGoogle Scholar
  126. 126.
    Jiang SD, Liu SS, Zhou LN, Wang BW, Wang ZM, Gao S. Series of lanthanide organometallic single-ion magnets. Inorg Chem, 2012, 51(5): 3079–3087CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • ShangDa Jiang
    • 1
  • Karin Goß
    • 1
  • Christian Cervetti
    • 1
    • 2
  • Lapo Bogani
    • 1
  1. 1.Physikalisches InstitutUniversität StuttgartStuttgartGermany
  2. 2.Max Planck Institut für FestkörperforschungStuttgartGermany

Personalised recommendations