Skip to main content
Log in

The ionic parachor and predicting properties of amino acid ionic liquid homologues of 1-alkyl-3-methylimidazolium glycine

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The amino acid ionic liquids (AAILs) [C3mim][Gly] (1-propyl-3-methylimidazolium glycine) and [C4mim][Gly] (1-butyl-3-methylimidazolium glycine) have been prepared by the neutralization method and characterized by 1H NMR spectroscopy and differential scanning calorimetry (DSC). The values of their density, surface tension and refractive index were measured at (298.15 ± 0.05) K. Since the AAILs can form strong hydrogen bonds with water, small amounts of water are difficult to remove from the AAILs by common methods. In order to eliminate the effect of the impurity water, the standard addition method (SAM) was applied to these measurements. A new concept which is called the ionic parachor has been put forward. The [C n mim]+ cations were treated as a group of reference ions and the individual values of their ionic parachor were evaluated in terms of an extrathermodynamic assumption. Then, using the values of the ionic parachor of reference ions, the parachor, surface tension γ and refractive index n D of the ionic liquids investigated in this work were estimated. The estimated values correlate quite well with the corresponding experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tao GH, He L, Liu WS, Xu L, Xiong W, Wang T, Kou Y. Preparation, characterization and application of amino acid-based green ionic liquids. Green Chem, 2006, 8: 639–646

    Article  CAS  Google Scholar 

  2. Fukumoto K, Yoshizawa M, Ohno H. Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc, 2005, 127: 2398–2399

    Article  CAS  Google Scholar 

  3. Fukumoto K, Ohno H. Design and synthesis of hydrophobic and chiral anions from amino acids as precursor for functional ionic liquids. Chem Commun, 2006, 3081–3083

  4. Ohno H, Fukumoto K. Amino acid ionic liquids. Acc Chem Res, 2007, 40: 1122–1129

    Article  CAS  Google Scholar 

  5. Fang DW, Tong J, Guan W, Wang H, Yang JZ. Predicting properties of amino acid ionic liquid homologue of 1-alkyl-3-methylimidazolium glycine. J Phys Chem B, 2010, 114: 13808–13814

    Article  CAS  Google Scholar 

  6. Zhang QG, Wang NN, Yu ZW. The hydrogen bonding interactions between the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate and water. J Phys Chem B, 2010, 114: 4747–4754

    Article  CAS  Google Scholar 

  7. Krossing I, Slattery JM. Semi-empirical methods to predict the physical properties of ionic liquids: An overview of recent developments. Z Phys Chem, 2006, 220: 1343–1359

    Article  CAS  Google Scholar 

  8. Li JG, Hu YF, Sun SF, Liu YS, Liu ZC. Densities and dynamic viscosities of the binary system (water + 1-hexyl-3-methylimidazolium bromide) at different temperatures. J Chem Thermodyn, 2010, 42: 904–908

    Article  CAS  Google Scholar 

  9. Preiss U, Bulut S, Krossing I. In silico prediction of the melting points of ionic liquids from thermodynamic considerations: A case study on 67 salts with a melting point range of 337 degrees C. J Phys Chem B, 2010, 114: 11133–11140

    Article  CAS  Google Scholar 

  10. Deetlefs M, Seddon KR, Shara M. Predicting physical properties of ionic liquids. Phys Chem Chem Phys, 2006, 8: 642–649

    Article  CAS  Google Scholar 

  11. Sugden SJ. The variation of surface tension with temperature and some related functions. J Chem Soc Trans, 1924, 125: 32–41

    Article  CAS  Google Scholar 

  12. Knotts TA, Wilding WV, Oscarson JL, Rowley RL. Use of the DIPPR database for development of QSPR correlations: Surface tension. J Chem Eng Data, 2001, 46: 1007–1012

    Article  CAS  Google Scholar 

  13. Fang DW, Guan W, Tong J, Wang ZW, Yang JZ. Study on physicochemical properties of ionic liquids based on alanine [Cnmim][Ala] (n = 2, 3, 4, 5, 6). J Phys Chem B, 2008, 112: 7499–7505

    Article  CAS  Google Scholar 

  14. Yang JZ, Zhang QG, Wang B, Tong J. Study on the properties of amino acid ionic liquid EMIGly. J Phys Chem B, 2006, 110: 22521–22524

    Article  CAS  Google Scholar 

  15. Yang JZ, Li JB, Tong J, Hong M. Application of Pitzer-Simonson theory and Pitzer-Simonson-Clegg theory to aqueous ionic liquid PMIBF4. Acta Chim Sinica, 2007, 65: 655–659

    CAS  Google Scholar 

  16. Wilkes JS, Levisky JA, Wilson RA, Hussey CL, Dialkylimidazolium chloroaluminate melts: A new class of room temperature ionic liquids for, spectroscopy and synthesis. Inorg Chem, 1982, 21: 1263–1268

    Article  CAS  Google Scholar 

  17. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem, 2001, 3: 156–164

    Article  CAS  Google Scholar 

  18. Lide DR. Handbook of Chemistry and Physics. Boca Raton: CRC Press, 2002

    Google Scholar 

  19. Glasser L. Lattice and phase transition thermodynamics of ionic liquids. Thermochimica Acta, 2004, 421: 87–93

    Article  CAS  Google Scholar 

  20. Slattery JM, Daguenet C, Dyson PJ, Schubert TJS, Krossing I. How to predict the physical properties of ionic liquids: A volume-based approach. Angew Chem Int Ed, 2007, 46: 5384–5388

    Article  CAS  Google Scholar 

  21. Jenkins HDB, Roobottom HK, Passmore J, Glasser L. Relationships among ionic lattice energies, molecular (formula unit) volumes, and thermochemical radii. Inorg Chem, 1999, 38: 3609–3620

    Article  CAS  Google Scholar 

  22. Jenkins HDB, Liebman JF. Volumes of solid state ions and their estimation. Inorg Chem, 2005, 44: 6359–6372

    Article  CAS  Google Scholar 

  23. Tong J, Liu QS, Xu WG, Fang DW, Yang JZ. The estimation of physico-chemical properties of ionic liquids 1-alkyl-3-methylimidazolium chloroaluminate. J Phys Chem B. 2008, 112: 4381–438624

    Article  CAS  Google Scholar 

  24. Tong J, Liu QS, Guan W, Yang JZ. Estimation of physicochemical properties of ionic liquid C6MIGaCl4 using surface tension and density. J Phys Chem B, 2007, 111: 3197–3120

    Article  CAS  Google Scholar 

  25. Yang JZ, Tong J, Li JB, Li JG, Tong J. Surface tension of pure and water-containing ionic liquid C5MIBF4 (1-methyl-3-pentylimidazolium tetrafluoroborate). J Colloid Inter Sci, 2007, 313: 374–377

    Article  CAS  Google Scholar 

  26. Zhang ZF, Li JB, Tong J, Yang JZ. Estimation of physico-chemical properties of ionic liquid [C5mim][BF4]. Chin J App Chem, 2009, 26: 426–430

    CAS  Google Scholar 

  27. Ersfeld B, Felderhof BU. Retardation correction to the Lorentz-Lorenz formula for the refractive index of a disordered system of polarizable point dipoles. Phys Rev, 1998, E57: 1118–1126

    Google Scholar 

  28. Fang DW. Studies on the properties of ionic liquids based on rarescattered metal and amino acid. Dissertation for the Doctoral Degree. Xining: Institute of Salt Lakes, Chinese Academy of Sciences, 2008

    Google Scholar 

  29. Tripathi RCJ. Relation between index of refraction and surface tension. Indian Chem Soc, 1941, 18: 411–427

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Tong or JiaZhen Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, J., Hong, M., Wang, P. et al. The ionic parachor and predicting properties of amino acid ionic liquid homologues of 1-alkyl-3-methylimidazolium glycine. Sci. China Chem. 55, 1330–1337 (2012). https://doi.org/10.1007/s11426-012-4616-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4616-8

Keywords

Navigation