Skip to main content
Log in

Molecular design and theoretical investigation into one- and two-photon absorption properties of two series of cyclometalated platinum (II) complexes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We have theoretically investigated two series of cyclometalated Pt(II) complexes, a series [Pt (C, N, N) Cl] and b series [Pt (C, N, Npyrazolyl) Cl]. The geometrical and electronic structures are calculated at the ECP60MWB//6-31G*(H, C, Cl, N, S) basis set level using DFT method; one-photon absorption (OPA) properties are calculated by using both TDDFT and ZINDO methods and two-photon absorption (TPA) properties are obtained with the ZINDO/SOS method. The resonance integrals parameters (β sp and β d) for Pt are adjusted to −1 and −28.5 eV, respectively, to make max OPA wavelength calculated by ZINDO closest to the experimental data and TDDFT results. The calculated results indicate the molecule 2b ([Pt (Cnaphthyl, N, Npyrazolyl) Cl]) has the biggest potential as outstanding TPA materials because (i) the TPA properties of b series are more outstanding in IR wavelength range, the molecules in b series have good transparencies and possess 1-pyrazolyl-NH that is also available for another metal coordination (e.g., dimerization) and chemical interactions; (ii) when C is Cnaphthyl in the C, N, N ligand of cyclometalated Pt(II) complexes, the molecules have the best conjugation effect and the best TPA properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sénéchal K, Maury O, Bozec HL, Ledoux I, Zyss J. Zinc(II) as a versatile template for the design of dipolar and octupolar NLO-phores. J Am Chem Soc, 2002, 124: 4560–4561

    Article  Google Scholar 

  2. Liu XJ, Feng JK, Ren AM, Cheng H, Zhou X. Calculations on the octupolar molecules with enhanced two-photon absorption cross sections based on the Zn(II) and Cu(I) as centers. J Chem Phys, 2004, 120: 11493–11499

    Article  CAS  Google Scholar 

  3. Das S, Nag A, Goswami D, Bharadwaj PK. Zinc(II)- and copper( I)-mediated large two-photon absorption cross sections in a bis-cinnamaldiminato Schiff base. J Am Chem Soc, 2006, 128: 402–403

    Article  CAS  Google Scholar 

  4. Zhang XB, Feng JK, Ren AM. Theoretical study of one- and two-photon absorption properties of octupolar D 2d and D 3 bipyridyl metal complexes. J Phys Chem A, 2006, 111: 1328–1338

    Article  Google Scholar 

  5. Koo CK, Ho YM, Chow CF, Lam MHW, Lau TC, Wong WY. Synthesis and spectroscopic studies of cyclometalated Pt(II) complexes containing a functionalized cyclometalating ligand, 2-phenyl-6-(1 H-pyrazol-3-yl)-pyridine. Inorg Chem, 2007, 46: 3603–3612

    Article  CAS  Google Scholar 

  6. Botchway SW, Charnley M, Haycock JW, Parker AW, Rochester DL, Weinstein JA, Williams JAG. Time-resolved and two-photon emission imaging microscopy of live cells with inert platinum complexes. Proc Natl Acad Sci USA. 2008, 105: 16071–16076

    Article  CAS  Google Scholar 

  7. Wu P, Wong ELM, Ma DL, Tong GSM, Ng KM, Che CM. Cyclometalated platinum (II) complexes as highly sensitive luminescent switch-on probes for practical application in protein staining and cell imaging. Chem Eur J, 2009, 15: 3652–3656

    Article  CAS  Google Scholar 

  8. Koo CK, Wong KL, Man CWY, Lam YW, So LKY, Tam HL, Tsao SW, Cheah KW, Lau KC, Yang YY, Chen JC, Lam MHW. A bioaccumulative cyclometalated platinum (II) complex with two-photon-induced emission for live cell imaging. Inorg Chem, 2009, 48: 872–878

    Article  CAS  Google Scholar 

  9. Zhang XB, Feng JK, Ren AM. Theoretical study of the two-photon absorption properties of octupolar complexes with Cu(I), Zn(II) and Al(III) as centers and bis-cinnamaldimine as ligands. J Organomet Chem, 2007, 692: 3778–3787

    Article  CAS  Google Scholar 

  10. McKay TJ, Bolger JA, Staromlynska J, Davy JR. Linear and nonlinear properties of Pt: Ethyny. J Chem Phys, 1998, 108: 5537–5541

    Article  CAS  Google Scholar 

  11. McKay TJ, Staromlynska J, Davy JR, Bolger JA. Cross sections for excited-state absorption in a Pt: Ethynyl complex. J Opt Soc Am B, 2001, 18: 358–362

    Article  CAS  Google Scholar 

  12. Staromlynska J, McKay TJ, Bolger JA, Davy JR. Evidence for broadband optical limiting in a Pt: Ethynyl compound. J Opt Soc Am B, 1998, 15: 1731–1736

    Article  CAS  Google Scholar 

  13. Staromlynska J, McKay TJ, Wilson PJ. Broadband optical limiting based on excited state absorption in Pt: Ethynyl. Appl Phys, 2000, 88: 1726–1732

    CAS  Google Scholar 

  14. Vestberg R, Malmstrøm E, Eriksson A, Lopes C, Lindgren M. Novel dendrimer-capped Pt-acetylides for optical power limiting. Proc SPIE, 2004, 5621: 31–45

    Article  CAS  Google Scholar 

  15. Vestberg R, Westlund R, Ericksson A, Lopes C, Carlsson M, Eliasson B, Glimsdal E, Lindgren M, Malmstrom E. Dendron decorated platinum (II) acetylides for optical power limiting. Macromolecules, 2006, 39: 2238–2246

    Article  CAS  Google Scholar 

  16. Glimsdal E, Carlsson M, Eliasson B, Minaev B, Lindgren M. Excited states and two-photon absorption of some novel thiophenyl Pt (II)-ethynyl derivatives. J Phys Chem A, 2007, 111: 244–250

    Article  CAS  Google Scholar 

  17. Shao P, Li Y, Sun W. Cyclometalated platinum (II) complex with strong and broadband nonlinear optical response. J Phys Chem A, 2008, 112: 1172–1179

    Article  CAS  Google Scholar 

  18. NifosÌ R, Luo Y. Predictions of novel two-photon absorption bands in fluorescent proteins. J Phys Chem B, 2007, 111: 14043–14050

    Article  Google Scholar 

  19. Moura GLC, Simas AM. Two-photon absorption by fluorene derivatives: Systematic molecular design. J Phys Chem C, 2010, 114: 6106–6116

    Article  CAS  Google Scholar 

  20. Zhang MY, Wang J, Lin CS, Cheng WD. First-principles study of one- and two-photon absorption of the H-bonding complexes from monomeric red fluorescent proteins with large stokes shifts. J Phys Chem B, 2011, 115: 10750–10757

    Article  CAS  Google Scholar 

  21. Liu YC, Kan YH, Wu SX, Yang GC, Zhao L, Zhang M, Guan W, Su ZM. Theoretical study on a novel series of fullerene-containing organometallics Fe(η5-C55X5)2 (X = CH, N, B) and their large third-order nonlinear optical properties. J Phys Chem A, 2008, 112: 8086–8092

    Article  CAS  Google Scholar 

  22. Shi LL, Liao Y, Yang GC, Su ZM, Zhao SS. Effect of π-conjugated length of bridging ligand on the optoelectronic properties of platinum (II) dimers. Inorg Chem, 2008, 47: 2347–2355

    Article  CAS  Google Scholar 

  23. Yang ZD, Feng JK, Ren AM. Theoretical investigation of one- and two-photon absorption properties of platinum acetylide chromophores. Inorg Chem, 2008, 47: 10841–10850

    Article  CAS  Google Scholar 

  24. Cha M, Torruellas WE, Stegeman GI, Horsthuis WHG, Möhlmann GR. Two photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer. J Methods Appl Phys Lett, 1994, 65: 2648–2650

    Article  CAS  Google Scholar 

  25. Kogej T, Beljonne D, Meyers F, Perry JW, Marder SR, Brédas JL. Mechanisms for enhancement of two-photon absorption in donor-acceptor conjugated chromophores. Chem Phys Lett, 1998, 298: 1–6

    Article  CAS  Google Scholar 

  26. Bishop DM, Luis JM, Kirtman B. Vibration and two-photon absorption. J Chem Phys, 2002, 116: 9729–9739

    Article  CAS  Google Scholar 

  27. Beljonne D, Wenseleers W, Zojer E, Shuai ZG, Vogel H, Pond SJK, Perry JW, Marder SR, Brédas JL. Role of demensionality on the two-photon absorption response of conjugated molecules: The case of octupolar compounds. Adv Funct Mater, 2002, 12: 631–641

    Article  CAS  Google Scholar 

  28. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652

    CAS  Google Scholar 

  29. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  30. Frisch Æ, Frisch MJ. Gaussian 03 User’s Reference. Version 7.0, 2004

  31. Niu S, Hall MB. Theoretical studies on reactions of transition-metal complexes. Chem Rev, 2000, 100: 353–406

    Article  CAS  Google Scholar 

  32. Li S, Hall MB. Theoretical studies of inorganic and organometallic reaction mechanisms 18. Catalytic transfer dehydrogenation of alkanes by an iridium (III) pincer complex. Organometallics, 2001, 20: 2153–2160

    Article  CAS  Google Scholar 

  33. Conner D, Jayaprakash KN, Cundari TR, Gunnoe TB. Synthesis and reactivity of a coordinatively unsaturated ruthenium (II) parent amido complex: Studies of X-H activation (X = H or C). Organometallics, 2004, 23: 2724–2733

    Article  CAS  Google Scholar 

  34. Iron MA, Martin JML, Van der Boom ME. Cycloaddition reactions of metalloaromatic complexes of iridium and rhodium: A mechanistic DFT investigation. J Am Chem Soc, 2003, 125: 11702–11709

    Article  CAS  Google Scholar 

  35. Hariharan PC, Pople JA. Influence of polarization on MO hydrogenation energies. Theor Chim Acta, 1973, 28: 213–222

    Article  CAS  Google Scholar 

  36. Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H. Energy-adjusted ab initio pseudo potentials for the second and third row transition elements. Theor Chim Acta, 1990, 77: 123–141

    Article  CAS  Google Scholar 

  37. MC Zerner. Users Guide to ZINDO-A Comprehensive Semi-Empirical SCF/CI Package, 1999

  38. Anderson WP, Edwards WD, Zerner MC. Calculated spectra of hydrated ions of the first transition-metal series. Inorg Chem, 1986, 25: 2728–2732

    Article  CAS  Google Scholar 

  39. Mantz YA, Musselman RL. ZINDO calculations of the ground state and electronic transitions in the tetracyanonickelate ion, Ni(CN)4 2−, Inorg Chem, 2002, 41: 5770–5777

    Article  CAS  Google Scholar 

  40. Anderson WP, Cundari TR, Drago RS, Zerner MC. Utility of the semiempirical INDO/l method for the calculation of the geometries of second-row transition-metal species. Inorg Chem, 1990, 29: 3–5

    Article  Google Scholar 

  41. Nguyen KA, Day PN, Pachter R. One- and two-photon spectra of platinum acetylide chromophores: A TDDFT Study. J Phys Chem A, 2009, 113: 13943–13952

    Article  CAS  Google Scholar 

  42. Lu W, Mi BX, Chan MCW, Hui Z, Che CM, Lee ST. Light-emitting tridentate cyclometalated platinum (II) complexes containing σ-alkynyl auxiliaries: Tuning of photo- and electrophosphorescence. J Am Chem Soc, 2004, 126: 4958–4971

    Article  CAS  Google Scholar 

  43. Sun W, Zhu H, Barron PM. Binuclear cyclometalated platinum (II) 4,6-diphenyl-2,2′-bipyridine complexes: Interesting photoluminescent and optical limiting materials. Chem Mater, 2006, 18: 2602–2610

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZhaoDi Yang or JiKang Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Zhang, G., Feng, J. et al. Molecular design and theoretical investigation into one- and two-photon absorption properties of two series of cyclometalated platinum (II) complexes. Sci. China Chem. 55, 1405–1412 (2012). https://doi.org/10.1007/s11426-012-4612-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4612-z

Keywords

Navigation