Skip to main content
Log in

Computational studies of σ-type weak interactions between NCO/NCS radicals and XY(X = H, Cl; Y = F, Cl, and Br)

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The triatomic radicals NCO and NCS are of interest in atmospheric chemistry, and both the ends of these radicals can potentially serve as electron donors during the formation of σ-type hydrogen/halogen bonds with electron acceptors XY (X = H, Cl; Y = F, Cl, and Br). The geometries of the weakly bonded systems NCO/NCS⋯XY were determined at the MP2/aug-cc-pVDZ level of calculation. The results obtained indicate that the geometries in which the hydrogen/halogen atom is bonded at the N atom are more stable than those where it is bonded at the O/S atom, and that it is the molecular electrostatic potential (MEP)—not the electronegativity — that determines the stability of the hydrogen/halogen bond. For the same electron donor (N or O/S) in the triatomic radical and the same X atom in XY, the bond strength decreases in the order Y = F > Cl > Br. In the hydrogen/ halogen bond formation process for all of the complexes studied in this work, transfer of spin electron density from the electron donor to the electron acceptor is negligible, but spin density rearranges within the triatomic radicals, being transferred to the terminal atom not interacting with XY.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeffrey GA. An Introduction to Hydrogen Bonding. New York: Oxford University Press, 1997

    Google Scholar 

  2. Desiraju GR, Steiner T. The Weak Hydrogen Bond in Structural Chemistry and Biology. USA: Oxford University Press, 2001

    Book  Google Scholar 

  3. Hadži D. Theoretical Treatments of Hydrogen Bonding. Chichester: John Wiley & Sons, 1997

    Google Scholar 

  4. Metrangolo P, Neukirsch J, Pilati T, Resnati G. Halogen bonding based recognition processes: A world parallel to hydrogen bonding. Acc Chem Res, 2005, 38: 386–395

    Article  CAS  Google Scholar 

  5. Metrangolo P, Resnati G. Halogen bonding: Fundamentals and applications(Structure and Bond). Berlin: Springer, 2008

    Google Scholar 

  6. Brinck T, Murray JS, Politzer, P. Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions. Int J Quantum Chem, 1992, 19: 57–64

    Article  CAS  Google Scholar 

  7. Politizer P, Lane P, Concha MC, Ma Y, Murray JS. An overview of halogen bonding. J Mol Model, 2007, 13: 305–311

    Article  Google Scholar 

  8. Politizer P, Lane P, Concha MC, Ma Y, Murray JS. Halogen bonding and the design of new materials: Organic bromides, chlorides and perhaps even fluorides as donors. J Mol Model, 2007, 13: 643–650

    Article  Google Scholar 

  9. Scheiner S. Hydrogen Bonding — A Theoretical Perspective, Oxford: Oxford University Press, 1997

    Google Scholar 

  10. Politizer P, Murray JS, Lane P. σ-Hole bonding and hydrogen bonding: Competitive interactions. Int J Quantum Chem, 2007, 27: 3046–3052

    Article  Google Scholar 

  11. Riley KE, Murray JS, Politzer P, Concha MC, Hobza P. Br…O complexes as probes of factors affecting halogen bonding: Interactions of bromobenzenes and bromopyrimidines with acetone. J Chem Theor Comp, 2009, 5: 155–163

    Article  CAS  Google Scholar 

  12. Murray JS, Lane P, Politizer P. Expansion of the sigma-hole concept. J Mol Model, 2009, 15: 723–729

    Article  CAS  Google Scholar 

  13. Hobza P, Havlas Z. Blue-shifting hydrogen bonds. Chem Rev, 2000, 100: 4253–4264

    Article  CAS  Google Scholar 

  14. Solimannejad M, Scheiner S. Weak hydrogen bonds in complexes pairing monohalomethanes with neutral formic acid. Chem Phys Lett, 2006, 424: 1–6

    Article  CAS  Google Scholar 

  15. Solimannejad M, Scheiner S. Hydrogen bonding of radicals: Interaction of dimethyl ether with HOO, HOOH, and HOO?. Chem Phys Lett, 2006, 429: 38–42

    Article  CAS  Google Scholar 

  16. Solimannejad M. Scheiner S. Stabilities and properties of complexes pairing hydroperoxyl radical with monohalomethanes. J Phys Chem A, 2006, 110: 5948–5951

    Article  CAS  Google Scholar 

  17. Solimannejad M, Azimi GPL. Characterization of hydrogen bonds in the interactions between HO2 radical and amides. Chem Phys Lett, 2004, 400: 185–190

    Article  CAS  Google Scholar 

  18. Aloisio S, Francisco JS. Complexes of hydroxyl and hydroperoxyl radical with formaldehyde, acetaldehyde, and acetone. J Phys Chem A, 2000, 104: 3211–3224

    Article  CAS  Google Scholar 

  19. Solimannejad M, Massahi S, Scheinerb S. Existence and characterization of HOO-HOOOH radical-molecule complexes: A computational study. J Mol Struct: Theochem, 2009, 913: 50–53

    Article  CAS  Google Scholar 

  20. Parreira RLT, Galembeck SE. Characterization of hydrogen bonds in the interactions between the hydroperoxyl radical and organic acids. J Am Chem Soc, 2003, 125: 15614–15622

    Article  CAS  Google Scholar 

  21. Torrent SM, Anglada, JM. The gas-phase hydrogen bond complexes between formic acid with hydroxyl: A theoretical study. Chem Phys Chem, 2004, 2: 183–191

    Article  Google Scholar 

  22. Wang B, Hou H. Theoretical investigations on the SO2 + HO2 reaction and the SO2-HO2 radical complex. Chem Phys Lett, 2005, 410: 235–241

    Article  CAS  Google Scholar 

  23. Espinosa GJ. Theoretical study of the trapping of the OOH radical by coenzyme Q. J Am Chem Soc, 2004, 126: 920–927

    Article  Google Scholar 

  24. Lissianski VV, Zamansky VM, Gardiner JWC. Gas Phase Combustion Chemistry, New York: Springer-Verlag, GmbH & Co. kGaA, 2000. 60

    Google Scholar 

  25. Miller JA, Bowman CT. Mechanism and modeling of nitrogen chemistry in combustion. Prog Energy Combust Sci, 1989, 15: 287–338

    Article  CAS  Google Scholar 

  26. Perry RA, Siebers DL. Rapid reduction of nitrogen oxides in exhaust gas streams. Nature, 1986, 324: 657–658

    Article  CAS  Google Scholar 

  27. Miller JA, Bowman CT. Kinetic modeling of the reduction of nitric oxide in combustion products by isocyanic acid. Int J Chem Kinet, 1991, 23: 289–313

    Article  CAS  Google Scholar 

  28. Becker KH, Schmidt F, Wiesen P. Temperature and pressure dependence of the NCO + C2H2 reaction. Chem Phys Lett, 1995, 235: 230–234

    Article  CAS  Google Scholar 

  29. Gao Y, Macdonald RG. Determination of the rate constant for the NCO(X2Π) + O(3P) reaction at 292 K. J Phys Chem, 2003, 107: 4625–4635

    CAS  Google Scholar 

  30. Holland R, Style DWG, Dixon RN, Ramsay DA. Emission and absorption spectra of NCO and NCS. Nature, 1958, 182: 336–337

    Article  CAS  Google Scholar 

  31. Misra P, Mathews CW, Ramsay DA. Analysis of the 0001 A 2Σ+-0010 X 2Π Band of 14NCO and 15NCO. J Mol Spectrosc, 1988, 130: 419–423

    Article  CAS  Google Scholar 

  32. Li Y, Iwata S. Potential energy surfaces of the ground and low-lying states of HCCS and NCS: CASSCF, MRCI and CCSD(T) studies. Chem Phys Lett, 1997, 273: 91–97

    Article  CAS  Google Scholar 

  33. Rajendra P. A Theoretical study of fine and hyperfine interactions in NCO and CNO radicals. J Chem Phys, 2004, 120: 10089–10100

    Article  Google Scholar 

  34. Arunan E. Hydrogen bonding and other molecular interactions. Curr Sci, 2008, 92: 17–18

    Google Scholar 

  35. Ting M, Peters NJS. Hydrogen bonding between FNO and H2O: Structure and energetics. J Phys Chem A, 2009, 113: 11316–11317

    Article  CAS  Google Scholar 

  36. Gaussian 03, Revision D.01. Wallingford CT: Gaussian, Inc, 2004

  37. Boys SF, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys, 1970, 19: 553–566

    Article  CAS  Google Scholar 

  38. Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev, 1988, 88: 899–923

    Article  CAS  Google Scholar 

  39. Bader RFW. Atoms in Molecules — A Quantum Theory. Oxford: Oxford University Press, 1990

    Google Scholar 

  40. Popelier P. Atoms in Molecules: An Introduction. London: Pearson Education, 2000

    Google Scholar 

  41. Matta CF, Boyd RJ. An introduction to the quantum theory of atoms in molecules. In: Matta CF, Boyd RJ, Eds. The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design. Weinheim: Wiley-VCH Verlag GmbH & Co. kGaA, 2007

    Google Scholar 

  42. Biegler-König F. AIM 2000, Version 1.0. Germany, Bielefeld: University of Applied Science, 2000

    Google Scholar 

  43. Jabłoński M, Palusiak M. Basis set and method dependence in atoms in molecules calculations. J Phys Chem A, 2010, 114: 2240–2244

    Article  Google Scholar 

  44. Hobza PZ. Intermolecular interactions between medium-sized systems. Nonempirical and empirical calculations of interaction energies. Successes and failures. Chem Rev, 1988, 88: 871–897

    Article  CAS  Google Scholar 

  45. Sanz P, Yanez M, Mó O. Competition between X…H…Y intramolecular hydrogen bonds and X…Y (X = O, S, and Y = Se, Te) chalcogen-chalcogen interactions. J Phys Chem A, 2002, 106: 4661–4668

    Article  CAS  Google Scholar 

  46. Hazra AB, Pal S. Weak interaction between HCHY (Y = O, S) and LiCl: A theoretical study. J Mol Struct: Theochem, 2000, 497: 157–163

    Article  CAS  Google Scholar 

  47. Cremer D, Kraka E. Chemical bonds without bonding electron density — does the difference electron density analysis suffice for a description of the chemical bond? Angew Chem Int Ed, 1984, 23: 627–628

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LingPeng Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Zeng, Y., Zhang, X. et al. Computational studies of σ-type weak interactions between NCO/NCS radicals and XY(X = H, Cl; Y = F, Cl, and Br). Sci. China Chem. 55, 1395–1404 (2012). https://doi.org/10.1007/s11426-012-4611-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4611-0

Keywords

Navigation