Skip to main content
Log in

Crystal structures and thermal decomposition kinetics of lanthanide complexes with 3,4,5-trimethoxybenzoic acid and 1,10-phenanthroline

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A series of lanthanide complexes with the 3,4,5-trimethoxybenzoic acid (3,4,5-tmoba) and 1,10-phenanthroline(phen), [Ln(3,4,5-tmoba)3phen]2(Ln = Pr(1), Nd (2) and Ho(3)), have been synthesized and characterized by a series of techniques including elemental analysis, IR spectra, X-ray crystallography and TG/DSC-FTIR technology. The three complexes have two kinds of coordination modes, in which the Pr3+ and Nd3+ cations are nine-coordinated and the Ho3+ cation is eight-coordinated. The three-dimensional IR accumulation spectra of gaseous products for complexes 1–3 were analyzed and the gaseous products were identified by the typical IR spectra obtained from the 3D surface graphs. Meanwhile, we obtained the activation energy E of the first steps of complexes 1–3 by the integral isoconversional non-linear (NL-INT) method and discussed the non-isothermal kinetics of complexes 1–3 using the Malek method. Finally, SB(m, n) was defined as the kinetic method of the first-step thermal decomposition. The thermodynamic parameters ΔG , ΔH and ΔS of activation at the peak temperature were also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barry T. New industrial applications of the lanthanides. Inorg Chim Acta, 1984, 94: 37

    Google Scholar 

  2. Pang X, Li DC, Peng A. Application of rare-earth elements in the agriculture of China and its environmental behavior in soil. Environ Sci Pollut Res Int, 2002, 9: 143–148

    Article  CAS  Google Scholar 

  3. Niu SY, Yang ZZ, Yang QC, Yang B, Chao JQ, Yang GD, Shen EZ. Structure and magnetism of tetra acetato bridged binuclear Nd(III) complex. Polyhedron, 1997, 116: 1629–1635

    Article  CAS  Google Scholar 

  4. Fedin VP, Kalinina IV, Virovets AV, Fenske D. Syntheses and structures of layered compounds based on lanthanides(III) and cubane molybdenum and tungsten telluride cyano complexes. Chem Bull, 2003, 52: 126–131

    Article  CAS  Google Scholar 

  5. Li HH, Niu Z, Han T, Zhang ZJ, Shi W, Cheng P. A microporous lanthanide metal-organic framework containing channels: Synthesis, structure, gas adsorption and magnetic properties. Sci China Chem, 2011, 9: 1423–1429

    Google Scholar 

  6. Watson PL, Facile CH. Activation by lutetium-methyl and lutetiumhydride complexes. J Chem Soc, Chem Commun, 1983: 276–277

  7. Watson PL. Methane exchange reactions of lanthanide and earlytransition-metal methyl complexes. J Am Chem Soc, 1983, 105: 6491–6493

    Article  CAS  Google Scholar 

  8. He QZ, Yang J, Min H, Li HX. Studies on the spectra and antibacterial properties of rare earth dinuclear complexes with L-phenylalanine and o-phenanthroline. Mater Lett, 2006, 60: 317–320

    Article  CAS  Google Scholar 

  9. Yu H, He QZ, Yang J, Zheng WJ. Synthesis, characterization and antibacterial properties of rare earth (Ce3+,Pr3+,Nd3+,Sm3+,Er3+) complexes with L-aspartic acid and o-phenanthroline. J Rare Earth, 2006, 24: 4–8

    Article  Google Scholar 

  10. Rzączyńska Z, Ostasz A, Sikorska-Iwan M, Głuchowska H, Olszewska E, Pikus S. Synthesis and characterization of metal polycarboxylates constructed from lanthanides(III) and 1,2,4,5-benzenetetracarboxylic acid. J Therm Anal Calorim, 2006, 84: 575–579

    Article  Google Scholar 

  11. Ferenc W, Bocian B. Thermal stability of 4-chloro-3-nitro- and 5-chloro-2-nitrobenzoates of rare earth elements. J Therm Anal Calorim, 1999, 55: 671–680

    Article  CAS  Google Scholar 

  12. Ye HM, Ren N, Zhang JJ, Sun SJ, Wang JF. Crystal structures, luminescent and thermal properties of a new series of lanthanide complexes with 4-ethylbenzoic acid. New J Chem, 2010, 34: 533–540

    Article  CAS  Google Scholar 

  13. Sun SJ, Ren N, Zhang JJ, Ye HM, Wang JF. Synthesis, crystal structure, and thermal decomposition kinetics of the complex of Ho 2,4-Dichlorobenzoic acid and 2,2′-Bipyridine. J Chem Eng Data, 2010, 55: 2458–2462

    Article  CAS  Google Scholar 

  14. Aparna K, Krishnamurthy SS, Nethaji M, Balaram P. Amino acid-lanthanide interaction (2): The X-ray crystal structures of lanthanide and calcuim complexes. Polyhedron, 1997, 16: 507–514

    Article  CAS  Google Scholar 

  15. Sun SJ, Zhang DH, Zhang JJ, Ye HM, Wang SP, Wu KZ. Crystal structures, luminescent properties and thermal decomposition kineticsof lanthanide complexes with 2-chloro-4-fluorobenzoic acid and 2,2-bipyridine. J Mol Struct, 2010. 977: 17–25

    Article  CAS  Google Scholar 

  16. Su Z, Fan J, Sun WY. Syntheses, crystal structures and properties of three novel coordination polymers with tripodal imidazole-containing ligands and benzenetetracarboxylate. Sci China Chem, 2010, 10: 2164–2169

    Google Scholar 

  17. Xu J, Zheng ST, Yang GY. A series of 3d-4f heterometallic frameworks comprising 2D lanthanide-organic layers and diverse Cu-complex pillars. Sci China Chem, 2010, 9: 1407–1417

    Google Scholar 

  18. Malek J, The kinetic analysis of non-isothermal data. Thermochim. Acta, 1992, 200: 257–259

    Article  CAS  Google Scholar 

  19. Malek J, Smrcka V. The kinetic analysis of the crystallization processes in glasses. Thermochim Acta, 1991, 186: 153–169

    Article  CAS  Google Scholar 

  20. Deacon GB, Phillips RJ. Synthesis and properties of the complexes of lanthanides with nitronyl nitroxides. Chem. Rev, 1980, 33: 227–250

    CAS  Google Scholar 

  21. Bai GB, Chen GD, Wang ZM, Yuan L, Kang ZW, Gao JZ, Synthesis and characterization of Ln(III)-glycine-1,10-phenathroline ternary chelates. Chin J Inorg Chem, 1988, 2: 32–41

    Google Scholar 

  22. Ye HM, Ren N, Li H, Zhang JJ, Sun SJ, Tian L. Synthesis, crystal structure and thermal decomposition kinetics of complex [Nd(BA)3bipy]2. J Therm Anal Calorim, 2010, 101: 205–211

    Article  CAS  Google Scholar 

  23. Xie W, Pan WP. Thermal characterization of materials using evolved gas analysis. J Therm Anal Calorim, 2001, 65: 669–685

    Article  CAS  Google Scholar 

  24. Sikorska-Iwan M, Modzelewska-Banachiewicz B. Thermal behaviour of 1,2,4,-triazole and 1,2,4-triazine derivatives. J Therm Anal Calorim, 2005, 81: 119–123

    Article  CAS  Google Scholar 

  25. Shimanouchi T. Tables of Molecular Vibrational Frequencies Consolidated, Vol.I. Gaithersburg: National Bureau of Standards, 1972. 1–160

    Google Scholar 

  26. Vyazovkin S, Dollimore, D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J Chem Inf Comput Sci, 1996, 36: 42–45

    Article  CAS  Google Scholar 

  27. Fu XC, Chen RH. Physical Chemistry, Part 2. Beijing: Peoples Education Press, 1979. 214

    Google Scholar 

  28. Straszko J, Olstak-Humienik M, Mozejko J. Kinetics of thermal decomposition of ZnSO4·7H2O. Thermochim Acta, 1997, 292: 145–150

    Article  CAS  Google Scholar 

  29. Olstak-Humienik M, Mozejko J. Thermodynamic functions of activated complexes created in thermal decomposition processes of sulphates. Thermochim Acta, 2000, 344: 73–79

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianJun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, K., Zhang, J., Ren, N. et al. Crystal structures and thermal decomposition kinetics of lanthanide complexes with 3,4,5-trimethoxybenzoic acid and 1,10-phenanthroline. Sci. China Chem. 55, 1283–1293 (2012). https://doi.org/10.1007/s11426-012-4610-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4610-1

Keywords

Navigation