Science China Chemistry

, Volume 55, Issue 10, pp 2134–2153 | Cite as

Synthesis and biological activities of thio-triazole derivatives as novel potential antibacterial and antifungal agents

  • QingPeng Wang
  • JingQing Zhang
  • Guri L. V. Damu
  • Kun Wan
  • HuiZhen Zhang
  • ChengHe Zhou
Articles

Abstract

A series of novel thio-triazole derivatives including thiols, thioethers and thiones as well as some corresponding triazolium compounds were conveniently and efficiently synthesized from commercially available halobenzyl halides and thiosemicarbazide. All the new compounds were characterized by 1H NMR, 13C NMR, FTIR, MS and HRMS spectra. Their antibacterial and antifungal activities in vitro were evaluated against four Gram-positive bacteria, four Gram-negative bacteria and two fungi by two-fold serial dilution technique. The preliminary bioassay indicated that some prepared triazoles exhibited effective antibacterial and antifungal activities. Especially, 3,4-dichlorobenzyl triazole-thione and its triazolium derivatives displayed the most potent activities against all the tested strains.

Keywords

triazole triazolium antibacterial antifungal cyclization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhou CH, Wang Y. Recent researches in triazole compounds as medicinal drugs. Curr Med Chem, 2012, 19: 239–280Google Scholar
  2. 2.
    Wang Y, Zhou CH. Recent advances in the researches of triazole compounds as medicinal drugs. Sci Sinca Chim, 2011, 41: 1429–1456CrossRefGoogle Scholar
  3. 3.
    Zhang FF, Gan LL, Zhou CH. Synthesis, antibacterial and antifungal activities of some carbazole derivatives. Bioorg Med Chem Lett, 2010, 20: 1881–1884CrossRefGoogle Scholar
  4. 4.
    Gan LL, Fang B, Zhou CH. Synthesis of azole-containing piperazine derivatives and evaluation of their antibacterial, antifungal and cytotoxic activities. Bull Korean Chem Soc, 2010, 31: 3684–3692CrossRefGoogle Scholar
  5. 5.
    Nath M, Sulaxna, Song XQ, Eng G, Kumar A. Synthesis and spectral studies of organotin(IV) 4-amino-3-alkyl-1,2,4-triazole-5-thionates: In vitro antimicrobial activity. Spectrochim Acta Part A, 2008, 70: 766–774CrossRefGoogle Scholar
  6. 6.
    Wei QL, Zhang SS, Gao J, Li WH, Xu LZ, Yu ZG. Synthesis and QSAR studies of novel triazole compounds containing thioamide as potential antifungal agents. Bioorg Med Chem, 2006, 14: 7146–7153CrossRefGoogle Scholar
  7. 7.
    Jadhav GR, Shaikh MU, Kale RP, Shiradkar MR, Gill CH. SAR study of clubbed[1,2,4]-triazolyl with fluorobenzimidazoles as antimicrobial and antituberculosis agents. Eur J Med Chem, 2009, 44: 2930–2935CrossRefGoogle Scholar
  8. 8.
    Patel NB, Khan IH, Rajani SD. Pharmacological evaluation and characterizations of newly synthesized 1,2,4-triazoles. Eur J Med Chem, 2010, 45: 4293–4299CrossRefGoogle Scholar
  9. 9.
    He R, Chen YF, Chen YH, Ougolkov AV, Zhang JS, Savoy DN, Billadeau DD, Kozikowski AP. Synthesis and biological evaluation of triazol-4-ylphenyl-bearing histone deacetylase inhibitors as anticancer agents. J Med Chem, 2010, 53: 1347–1356CrossRefGoogle Scholar
  10. 10.
    Lee J, Kim SJ, Choi H, Kim YH, Lim IT, Yang H, Lee CS, Kang HR, Ahn SK, Moon SK, Kim DH, Lee S, Choi NS, Lee KJ. Identification of CKD-516: A potent tubulin polymerization inhibitor with marked antitumor activity against murine and human solid tumors. J Med Chem, 2010, 53: 6337–6354CrossRefGoogle Scholar
  11. 11.
    Al-Omar MA, Al-Abdullah ES, Shehata IA, Habib EE, Ibrahim TM, El-Emam AA. Synthesis, antimicrobial, and anti-inflammatory activities of novel 5-(1-adamantyl)-4-arylideneamino-3-mercapto-1,2,4-triazoles and related derivatives. Molecules, 2010, 15: 2526–2550CrossRefGoogle Scholar
  12. 12.
    Deng XQ, Wei CX, Li FN, Sun ZG, Quan ZS. Design and synthesis of 10-alkoxy-5,6-dihydro-triazolo[4,3-d]benzo[f][1,4] oxazepine derivatives with anticonvulsant activity. Eur J Med Chem, 2010, 45: 3080–3086CrossRefGoogle Scholar
  13. 13.
    Fang B, Zhou CH, Rao XC. Synthesis and biological activities of novel amine-derived bis-azoles as potential antibacterial and antifungal agents. Eur J Med Chem, 2010, 45: 4388–4398CrossRefGoogle Scholar
  14. 14.
    Acetti D, Brenna E, Fuganti C, Gatti FG, Serra S. Enzyme-catalysed approach to the preparation of triazole antifungals: synthesis of (-)-genaconazole. Tetrahedron: Asymmetry, 2009, 20: 2413–2420CrossRefGoogle Scholar
  15. 15.
    Genin MJ, Allwine DA, Anderson DJ, Barbachyn MR, Emmert DE, Garmon SA, Graber DR, Grega KC, Hester JB, Hutchinson DK, Morris J, Reischer RJ, Ford CW, Zurenko GE, Hamel JC, Schaadt RD, Stapert D, Yagi BH. Substituent effects on the antibacterial activity of nitrogen carbon-linked (azolylphenyl)oxazolidinones with expanded activity against the fastidious gram-negative organisms Haemophilus influenzae and Moraxella catarrhalis. J Med Chem, 2000, 43: 953–970CrossRefGoogle Scholar
  16. 16.
    Bhandari K, Srinivas N, Shiva KGB, Shukla PK. Tetrahydronaphthyl azole oxime ethers: The conformationally rigid analogues of oxiconazole as antibacterials. Eur J Med Chem, 2009, 44: 437–447CrossRefGoogle Scholar
  17. 17.
    Eswaran S, Adhikari AV, Shetty NS. Synthesis and antimicrobial activities of novel quinoline derivatives carrying 1,2,4-triazole moiety. Eur J Med Chem, 2009, 44: 4637–4647CrossRefGoogle Scholar
  18. 18.
    Shi Y, Zhou CH, Zhou XD, Geng RX, Ji QG. Synthesis and antimicrobial evaluation of coumarin-based benzotriazoles and their synergistic effects with chlromycin and fluconazole. Acta Pharmac Sin, 2011, 46: 798–810Google Scholar
  19. 19.
    Borate HB, Maujan SR, Sawargave SP, Chandavarkar MA, Vaiude SR, Joshi VA, Wakharkar RD, Iyer R, Kelkar RG, Chavan SP, Kunte SS. Fluconazole analogues containing 2H-1,4-benzothiazin-3(4H)-one or 2H-1,4-benzoxazin-3(4H)-one moieties, a novel class of anti-Candida agents. Bioorg Med Chem Lett, 2010, 20: 722–725CrossRefGoogle Scholar
  20. 20.
    Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan E, Thirunarayan MA, Turton J, Upadhyay S, Warner M, Welfare W, Livermore DM, Woodford N. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study. Lancet Infect Dis, 2010, 10: 597–602CrossRefGoogle Scholar
  21. 21.
    Bielaszewska M, Mellmann A, Zhang WL, Köck R, Fruth A, Bauwens A, Peters G, Karch H. Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: A microbiological study. Lancet Infect Dis, 2011, 11: 671–676Google Scholar
  22. 22.
    Dan ZG, Zhang J, Yu SC, Hu HG, Chai XY, Sun QY, Wu QY. Design and synthesis of novel triazole antifungal derivatives based on the active site of fungal lanosterol 14a-demethylase (CYP51). Chinese Chem Lett, 2009, 20: 935–938CrossRefGoogle Scholar
  23. 23.
    Güzeldemirci NU, Küçükbasmacı Ö. Synthesis and antimicrobial activity evaluation of new 1,2,4-triazoles and 1,3,4-thiadiazoles bearing imidazo[2,1-b]thiazole moiety. Eur J Med Chem, 2010, 45: 63–68CrossRefGoogle Scholar
  24. 24.
    Soni B, Ranawat MS, Sharma R, Bhandari A, Sharma S. Synthesis and evaluation of some new benzothiazole derivatives as potential antimicrobial agents. Eur J Med Chem, 2010, 45: 2938–2942CrossRefGoogle Scholar
  25. 25.
    Marino JP, Fisher PW, Hofmann GA, Kirkpatrick RB, Janson CA, Johnson RK, Ma C, Mattern M, Meek TD, Ryan MD, Schulz C, Smith WW, Tew DG, Tomazek TA, Veber DF, Xiong WC, Yamamoto Y, Yamashita K, Yang G, Thompson SK. Highly potent inhibitors of methionine aminopeptidase-2 based on a 1.2.4-triazole pharmacophore. J Med Chem, 2007, 50: 3777–3785CrossRefGoogle Scholar
  26. 26.
    Wan K, Zhou CH. Synthesis of novel halobenzyloxy and alkoxy 1,2,4-triazoles and evaluation for their antifungal and antibacterial activities. Bull Korean Chem Soc, 2010, 31: 2003–2010CrossRefGoogle Scholar
  27. 27.
    Kumar GVS, Rajendraprasad Y, Mallikarjuna BP, Chandrashekar SM, Kistayya C. Synthesis of some novel 2-substituted-5-[isopropylthiazole] clubbed 1,2,4-triazole and 1,3,4-oxadiazoles as potential antimicrobial and antitubercular agents. Eur J Med Chem, 2010, 45: 2063–2074CrossRefGoogle Scholar
  28. 28.
    Prasad DJ, Ashok M, Karegoudar P, Poojary B, Holla BS, Kumari NS. Synthesis and antimicrobial activities of some new triazolothiadiazoles bearing 4-methylthiobenzyl moiety. Eur J Med Chem, 2009, 44: 551–557CrossRefGoogle Scholar
  29. 29.
    Mallikarjuna BP, Sastry BS, Kumar GVS, Rajendraprasad Y, Chandrashekar SM, Sathisha K. Synthesis of new 4-isopropylthiazole hydrazide analogs and some derived clubbed triazole, oxadiazole ring systems-a novel class of potential antibacterial, antifungal and antitubercular agents. Eur J Med Chem, 2009, 44: 4739–4746CrossRefGoogle Scholar
  30. 30.
    Bonanomi G, Braggio S, Capelli AM, Checchia A, Fabio RD, Marchioro C, Tarsi L, Tedesco G, Terreni S, Worby A, Heibreder C, Micheli F. Triazolyl azabicyclo[3.1.0]hexanes: a class of potent and selective dopamine D3 receptor antagonists. ChemMedChem, 2010, 5: 705–715CrossRefGoogle Scholar
  31. 31.
    Kucukguzel I, Kucukguzel SG, Rollasa S, Kiraz M. Some 3-thioxo/alkylthio-1,2,4-triazoles with a substituted thiourea moiety as possible antimycobacterials. Bioorg Med Chem Lett, 2001, 11: 1703–1707CrossRefGoogle Scholar
  32. 32.
    Bayrak H, Demirbas A, Karaoglu SA, Demirbas N. Synthesis of some new 1,2,4-triazoles, their Mannich and Schiff bases and evaluation of their antimicrobial activities. Eur J Med Chem, 2009, 44: 1057–1066CrossRefGoogle Scholar
  33. 33.
    Bhatia MS, Zarekar BE, Choudhari PB, Ingale KB, Bhatia NM. Combinatorial approach: identification of potential antifungals from triazole minilibraries. Med Chem Res, 2011, 20: 116–120.CrossRefGoogle Scholar
  34. 34.
    Kalhor M, Mobinikhaledi A, Dadras A, Tohidpour M. Synthesis and antimicrobial activity of some novel substituted 1,2,4-triazoles bearing 1,3,4-oxadiazoles or pyrazoles. J Heterocycl Chem, 2011, 48: 1366–1370CrossRefGoogle Scholar
  35. 35.
    Almajan GL, Barbuceanu S, Almajan E, Draghici C, Saramet G. Synthesis, characterization and antibacterial activity of some triazole Mannich bases carrying diphenylsulfone moieties. Eur J Med Chem, 2009, 44: 3083–3089CrossRefGoogle Scholar
  36. 36.
    Deprez-Poulain RF, Charton J, Leroux V, Deprez BP. Convenient synthesis of 4H-1,2,4-triazole-3-thiols using di-2-pyridylthiono-carbonate. Tetrahedron Lett, 2007, 48: 8157–8162CrossRefGoogle Scholar
  37. 37.
    Mavrova AT, Wesselinova D, Tsenov YA, Denkova P. Synthesis, cytotoxicity and effects of some 1,2,4-triazole and 1,3,4-thiadiazole derivatives on immunocompetent cells. Eur J Med Chem, 2009, 44: 63–69CrossRefGoogle Scholar
  38. 38.
    Tamilselvi A, Mugesh G. Interaction of heterocyclic thiols/thiones eliminated from cephalosporins with iodine and its biological implications. Bioorg Med Chem Lett, 2010, 20: 3692–3697CrossRefGoogle Scholar
  39. 39.
    Li ZZ, Gu Z, Yin K, Zhang R, Deng Q, Xiang JN. Synthesis of substituted-phenyl-1,2,4-triazol-3-thione analogues with modified D-glucopyranosyl residues and their antiproliferative activities. Eur J Med Chem, 2009, 44: 4716–4720CrossRefGoogle Scholar
  40. 40.
    Wang XL, Wan K, Zhou CH. Synthesis of novel sulfanilamidederived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur J Med Chem, 2010, 45: 4631–4639CrossRefGoogle Scholar
  41. 41.
    Wei JJ, Jin L, Wan K, Zhou CH. Synthesis of novel D-glucose-derived benzyl and alkyl 1,2,3-triazoles as potential antifungal and antibacterial agents. Bull Korean Chem Soc, 2011, 32: 229–238CrossRefGoogle Scholar
  42. 42.
    Ezabadi IR, Camoutsis C, Zoumpoulakis P, Geronikaki A, Soković M, Glamočilijad J, Ćirić A. Sulfonamide-1,2,4-triazole derivatives as antifungal and antibacterial agents: Synthesis, biological evaluation, lipophilicity, and conformational studies. Bioorg Med Chem, 2008, 16: 1150–1161CrossRefGoogle Scholar
  43. 43.
    Luo Y, Lu YH, Gan LL, Zhou CH, Wu J, Geng RX, Zhang YY. Synthesis, antibacterial and antifungal activities of novel 1,2,4-triazolium derivatives. Arch Pharm, 2009, 342: 386–393CrossRefGoogle Scholar
  44. 44.
    Sztanke K, Pasternak K, Sidor-Wójtowicz A, Truchlińskac J, Jóźwiakd K. Synthesis of imidazoline and imidazo[2,1-c][1,2,4] triazole aryl derivatives containing the methylthio group as possible antibacterial agents. Bioorg Med Chem, 2006, 14: 3635–3642CrossRefGoogle Scholar
  45. 45.
    Gülerman NN, Doğan HN, Rollas S, Johansson C, Çelik C. Synthesis and structure elucidation of some new thioether derivatives of 1,2,4-triazoline-3-thiones and their antimicrobial activities. Il Farmaco, 2001, 56: 953–958CrossRefGoogle Scholar
  46. 46.
    Demirbas A, Sahin D, Demirbas N, Karaoglu SA. Synthesis of some new 1,3,4-thiadiazol-2-ylmethyl-1,2,4-triazole derivatives and investigation of their antimicrobial activities. Eur J Med Chem, 2009, 44: 2896–2903CrossRefGoogle Scholar
  47. 47.
    Zhang YY, Zhou CH. Synthesis and activities of naphthalimide azoles as a new type of antibacterial and antifungal agents. Bioorg Med Chem Lett, 2011, 21: 4349–4352CrossRefGoogle Scholar
  48. 48.
    Moulin A, Bibian M, Blayo A, Habnouni SE, Martinez J, Fehrentz J. Synthesis of 3,4,5-trisubstituted-1,2,4-triazoles. Chem Rev, 2010, 110: 1809–1827CrossRefGoogle Scholar
  49. 49.
    Zhang YY, Mi JL, Zhou CH, Zhou XD. Synthesis of novel fluconazoliums and their evaluation for antibacterial and antifungal activities. Eur J Med Chem, 2011, 46: 4391–4402CrossRefGoogle Scholar
  50. 50.
    Shi Y, Zhou CH. Synthesis and evaluation for a class of new coumarin triazole derivatives as potential antimicrobial agents. Bioorg Med Chem Lett, 2011, 21: 956–960CrossRefGoogle Scholar
  51. 51.
    Kadi AA, El-Brollosy NR, Al-Deeb OA, Habib EE, Ibrahim TM, El-Emam AA. Synthesis, antimicrobial, and anti-inflammatory activities of novel 2-(1-adamantyl)-5-substituted-1,3,4-oxadiazoles and 2-(1-adamantylamino)-5-substituted-1,3,4-thiadiazoles. Eur J Med Chem, 2007, 42: 235–242CrossRefGoogle Scholar
  52. 52.
    Özbek N, Katırcıoglu H, Karacan N, Baykal T. Synthesis, characterization and antimicrobialactivity of new aliphatic sulfonamide. Bioorg Med Chem, 2007, 15: 5105–5109CrossRefGoogle Scholar
  53. 53.
    Davari MD, Bahrami H, Haghighi ZZ, Zahedi M. Quantum chemical investigation of intramolecular thione-thiol tautomerism of 1,2,4-triazole-3-thione and its disubstituted derivatives. J Mol Model, 2010, 16: 841–855CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • QingPeng Wang
    • 1
  • JingQing Zhang
    • 2
  • Guri L. V. Damu
    • 1
  • Kun Wan
    • 1
  • HuiZhen Zhang
    • 1
  • ChengHe Zhou
    • 1
  1. 1.School of Chemistry and Chemical EngineeringSouthwest UniversityChongqingChina
  2. 2.Chongqing Key Laboratory of Biochemical & Molecular Pharmacology, Medicine Engineering Research CenterChongqing Medical UniversityChongqingChina

Personalised recommendations