Skip to main content
Log in

Static field induced magnetic relaxations in dinuclear lanthanide compounds of [phen2Ln2(HCOO)4(HCOO)2−2x (NO3)2x ] (1, Ln = Gd and x = 0.52; 2, Ln = Er and x = 0.90; phen = 1,10-phenanthroline)

  • Articles
  • Special Topic · Molecular Magnetism
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Two dinuclear lanthanide (Ln) complexes, formulated as [phen2Ln2(HCOO)4(HCOO)2−2x (NO3)2x ] (1, Ln = Gd and x = 0.52; 2, Ln = Er and x = 0.90; phen = 1,10-phenanthroline), were synthesized and characterized. They are isostructural. The dinuclear molecule consists of two Ln3+ bridged by four formate groups and chelated by phen and formate/nitrate ligands, and the Ln3+ possesses a coordination environment of distorted tri-capped trigonal prism of LnO7N2. Both compounds behave as paramagnets between 2 and 300 K, but display two static field induced magnetic relaxation processes. One is slow and of spin-lattice type, and it results from the lifting of Kramer’s degeneracy of the ground-states of both Gd3+ and Er3+, and the other is fast, and it might be spin-spin type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu QD, Li JR, Gao S, Ma BQ, Zhou QZ, Yu KB, Liu H. Anion controlled 2D assembly of a La-Cu cation array and its unusual magnetic properties. Chem Commun, 2000, 1685–1686

  2. Wang BW, Jiang SD, Wang XT, Gao S. Magnetic molecular materials with paramagnetic lanthanide ions. Sci China Ser B-Chem, 2009, 52: 1739–1758

    Article  CAS  Google Scholar 

  3. Jiang SD, Wang BW, Su G, Wang ZM, Gao S. A mononuclear dysprosium complex featuring single-molecule-magnet behavior. Angew Chem Int Ed, 2010, 49: 7448–7451

    Article  CAS  Google Scholar 

  4. Sorace L, Benellib C, Gatteschi D. Lanthanides in molecular magnetism: Old tools in a new field. Chem Soc Rev, 2011, 40: 3092–3104

    Article  CAS  Google Scholar 

  5. Ishikawa N, Sugita M, Ishikawa T, Koshihara SY, Kaizu Y. Mononuclear lanthanide complexes with a long magnetization relaxation time at high temperatures: a new category of magnets at the single-molecular level. J Phys Chem B, 2004, 108: 11265–11271

    Article  CAS  Google Scholar 

  6. Katoh K, Isshiki H, Komeda T, Yamashita M. Multiple-decker phthalocyaninato Tb(III) single-molecule magnets and Y(III) complexes for next generation devices. Coord Chem Rev, 2011, 255: 2124–2148

    Article  CAS  Google Scholar 

  7. Car PE, Perfetti M, Mannini M, Favre A, Caneschi A, Sessoli R. Giant field dependence of the low temperature relaxation of the magnetization in a dysprosium(III)-DOTA complex. Chem Commun, 2011, 47: 3751–3753

    Article  CAS  Google Scholar 

  8. Guo YN, Xu GF, Wernsdorfer W, Ungur L, Guo Y, Tang JK, Zhang HJ, Chibotaru LF, Powell AK. Strong axiality and ising exchange interaction suppress zero-field tunneling of magnetization of an asymmetric Dy2 single-molecule magnet. J Am Chem Soc, 2011, 133: 11948–11951

    Article  CAS  Google Scholar 

  9. Jiang SD, Wang BW, Sun HL, Wang ZM, Gao S. An organometallic single-ion magnet. J Am Chem Soc, 2011, 133: 4730–4733

    Article  CAS  Google Scholar 

  10. Jiang SD, Liu SS, Zhou LN, Wang BW, Wang ZM, Gao S. Series of lanthanide organometallic single-ion magnets. Inorg Chem, 2012, 51: 3079–3087

    Article  CAS  Google Scholar 

  11. Rinehart JD, Long JR. Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem Sci, 2011, 2: 2078–2085

    Article  CAS  Google Scholar 

  12. Tang JK, Hewitt I, Madhu NT, Chastanet G, Wernsdorfer W, Anson CE, Benelli C, Sessoli R, Powell AK. Dysprosium triangles showing single-molecule magnet behavior of thermally excited spin states. Angew Chem Int Ed, 2006, 45: 1729–1733

    Article  CAS  Google Scholar 

  13. Li MY, Lan YH, Ako AM, Wernsdorfer W, Anson CE, Buth G, Powell AK, Wang ZM, Gao S. A Family of 3d–4f octa-nuclear [MnIII 4LnIII 4] wheels (Ln = Sm, Gd, Tb, Dy, Ho, Er, and Y): synthesis, structure, and magnetism. Inorg Chem, 2010, 49: 11587–11594

    Article  CAS  Google Scholar 

  14. Yan PF, Lin PH, Habib F, Aharen T, Murugesu M, Deng ZP, Li GM, Sun WB. Planar tetranuclear Dy(III) single-molecule magnet and its Sm(III), Gd(III), and Tb(III) analogues encapsulated by salen-type and β-diketonate ligands. Inorg Chem, 2011, 50: 7059–7065

    Article  CAS  Google Scholar 

  15. Sulway SA, Layfield RA, Tuna F, Wolfgang Wernsdorferb W, Winpenny REP. Single-molecule magnetism in cyclopentadienyl-dysprosium chlorides. Chem Commun, 2012, 48:1508–1510

    Article  CAS  Google Scholar 

  16. Misiorny M, Barnaś J. Switching of molecular magnets. Phys Stat Sol B, 2009, 246: 695–715

    Article  CAS  Google Scholar 

  17. Gatteschi D, Sessoli R. Quantum Tunneling of Magnetization and Related Phenomena in Molecular Materials. Angew Chem Int Ed, 2003, 42: 268–297

    Article  CAS  Google Scholar 

  18. Ma BQ, Gao S, Su G, Xu GX. Cyano-Bridged 4f-3d Coordination polymers with a unique two-dimensional topological architecture and unusual magnetic behavior. Angew Chem Int Ed, 2001, 40: 434–437

    Article  CAS  Google Scholar 

  19. Gao S, Su G, Yi T, Ma BQ. Observation of an unusual field-dependent slow magnetic relaxation and two distinct transitions in a family of rare-earth-transition-metal complexes. Phys Rev B, 2001, 63: 054431-1–054431-6

    Google Scholar 

  20. Sugita M, Ishikawa N, Ishikawa T, Koshihara SY, Kaizu Y. Static magnetic-field-induced phase lag in the magnetization response of tris(dipicolinato)lanthanides. Inorg Chem, 2006, 45: 1299–1304

    Article  CAS  Google Scholar 

  21. Nonius BV. Collect Data Collection Software. Delft, The Netherlands, 1998

  22. HKL2000 and MaXus Softwares, Scotland UK: University of Glasgow; Nonius BV, Delft, Yokohama Japan: The Netherlands and MacScience Co Ltd, 2000

  23. Blessing RH. An empirical correction for absorption anisotropy. Acta Cryst, 1995, A51: 33–37

    CAS  Google Scholar 

  24. Blessing RH. Outlier treatment in data merging. J Appl Cryst, 1997, 30: 421–426

    Article  CAS  Google Scholar 

  25. Sheldrick GM. SHELX-97, Program for Crystal Structure Determination. Germany: University of Göttingen, 1997

    Google Scholar 

  26. Mulay LN, Boudreaux EA. Theory and Applications of Molecular Diamagnetism. New York: John Wiley & Sons Inc, 1976

    Google Scholar 

  27. Li MY, Liu B, Wang BW, Wang ZM, Gao S, Kurmoo M. Erbiumformate frameworks templated by diammonium cations: syntheses, structures, structural transition and magnetic properties. Dalton Trans, 2011, 40: 6038–6046

    Article  CAS  Google Scholar 

  28. Liu B, Zheng HB, Wang ZM, Gao S. Chiral crystalline solids of ammonium-templated ErIII-formate frameworks assembled from three achiral acentric components. CrystEngComm, 2011, 13: 5285–5288

    Article  CAS  Google Scholar 

  29. He Z, He C, Gao EQ, Wang ZM, Yang XF, Liao CS, Yan CH. Lanthanide-transition heterometallic extended structures with novel orthogonal metalloligand as building block. Inorg Chem, 2003, 42: 2206–2208

    Article  CAS  Google Scholar 

  30. Ishikawa N, Sugita M, Ishikawa T, Koshihara SY, Kaizu Y. Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J Am Chem Soc, 2003, 125: 8694–8695

    Article  CAS  Google Scholar 

  31. He Z, Gao EQ, Wang ZM, Yan CH, Kurmoo M. Coordination polymers based on inorganic lanthanide(III) sulfate skeletons and an organic isonicotinate N-oxide connector: segregation into three structural types by the lanthanide contraction effect. Inorg Chem, 2005, 44: 862–874

    Article  CAS  Google Scholar 

  32. Huang YG, Wu BL, Yuan DQ, Xu YQ, Jiang FL, Hong MC. New lanthanide hybrid as clustered infinite nanotunnel with 3d Ln-O-Ln framework and (3,4)-connected net. Inorg Chem, 2007, 46: 1171–1176

    Article  CAS  Google Scholar 

  33. Li DP, Wang TW, Li CH, Liu DS, Li YZ, You XZ. Single-ion magnets based on mononuclear lanthanide complexes with chiral Schiff base ligands [Ln(FTA)3L] (Ln = Sm, Eu, Gd, Tb and Dy). Chem Commun, 2010, 46: 2929–2931

    Article  CAS  Google Scholar 

  34. Bernot K, Bogani L, Caneschi A, Gatteschi D, Sessoli R. A family of rare-earth-based single chain magnets: playing with anisotropy. J Am Chem Soc, 2006, 128: 7947–7956

    Article  CAS  Google Scholar 

  35. Zhu WH, Wang ZM, Gao S. A 3D porous lanthanide-fumarate framework with water hexamer occupied cavities, exhibiting a reversible dehydration and rehydration procedure. Dalton Trans, 2006, 765–768

  36. Lin JM, Guan YF, Wang DY, Dong W, Wang XT, Gao S. Syntheses, structures and properties of seven isomorphous 1D Ln3+ complexes Ln(BTA)(HCOO)(H2O)3 (H2BTA = bis(tetrazoly)amine, Ln = Pr, Gd, Eu, Tb, Dy, Er, Yb) and two 3D Ln3+ complexes Ln(HCOO)3 (Ln = Pr, Nd). Dalton Trans, 2008, 6165–6169

  37. Visinescu D, Fabelo O, R-Pérez C, Lloretc F, Julve M. [Fe(phen)(CN)4]: a suitable metalloligand unit to build 3d–4f heterobimetallic complexes with mixed bpym-cyano bridges (phen = 1,10-phenantroline, bpym = 2,20-bipyrimidine). CrystEngComm, 2010, 12: 2454–2465

    Article  CAS  Google Scholar 

  38. Puntus LN, Lyssenko KA, Antipin MY, Bünzli JCG. Role of innerand outer-sphere bonding in the sensitization of EuIII-luminescence deciphered by combined analysis of experimental electron density distribution function and photophysical data. Inorg Chem, 2008, 47: 11095–11107

    Article  CAS  Google Scholar 

  39. Li Y, Zheng FK, Liu X, Zou WQ, Guo GC, Lu CZ, Huang JS. Crystal structures and magnetic and luminescent properties of a series of homodinuclear lanthanide complexes with 4-cyanobenzoic ligand. Inorg Chem, 2006, 45: 6308–6316

    Article  CAS  Google Scholar 

  40. Benelli C, Gatteschi D. Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. Chem Rev, 2002, 102: 2369–2387

    Article  CAS  Google Scholar 

  41. Hatscher ST, Urland W. Unexpected appearance of molecular ferromagnetism in the ordinary acetate [{Gd(OAc)3(H2O)2}2]·4H2O. Angew Chem Int Ed, 2003, 42: 2862–2864

    Article  CAS  Google Scholar 

  42. Costes JP, C-Juan JM, Dahan F, Nicodéme F, Verelst M. Unprecedented ferromagnetic interaction in homobinuclear erbium and gadolinium complexes: Structural and magnetic studies. Angew Chem Int Ed, 2002, 41: 323–325

    Article  CAS  Google Scholar 

  43. Guo F S, Leng JD, Liu JL, Meng ZS, Tong ML. Polynuclear and polymeric gadolinium acetate derivatives with large magnetocaloric effect. Inorg Chem, 2012, 51: 405–413

    Article  CAS  Google Scholar 

  44. Mydosh J A. Spin Glass: an Experimental Introduction. London-Washington DC: Taylor & Francis, 1993

    Google Scholar 

  45. Cole KS, Cole RH. Dispersion and absorption in dielectrics I. alternating current characteristics, J Chem Phys, 1941, 9: 341–352

    Article  CAS  Google Scholar 

  46. Balanda M. in Relaxation Phenomena: Liquid Crystals, Magnetic Systems, Polymers, High-Tc Superconductors, Metallic Glass. Haase W, ed. Berlin Heidelberg: Springer-Verlag, 2003: 95–97

    Google Scholar 

  47. Carlin RL, van Duyneveldt AJ. Magnetic Properties of Transition metal Compounds. New York: Springer-Verlag, 1977: 33–44

    Book  Google Scholar 

  48. Pointillart F, Bernot K, Sessoli R, Gatteschi D. Effects of 3d–4f magnetic exchange interactions on the dynamics of the magnetization of DyIII-MII-DyIII trinuclear clusters. Chem Eur J, 2007, 13: 1602–1609

    Article  Google Scholar 

  49. Orbach R. Spin-lattice relaxation in rare-earth salts. Proc R Soc London Ser A, 1961, 264: 458–484

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZheMing Wang or Song Gao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Wang, B., Wang, Z. et al. Static field induced magnetic relaxations in dinuclear lanthanide compounds of [phen2Ln2(HCOO)4(HCOO)2−2x (NO3)2x ] (1, Ln = Gd and x = 0.52; 2, Ln = Er and x = 0.90; phen = 1,10-phenanthroline). Sci. China Chem. 55, 926–933 (2012). https://doi.org/10.1007/s11426-012-4599-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4599-5

Keywords

Navigation