Skip to main content
Log in

CH2, NH, and O heteroatom substitution effects on the electronic, optical, and charge transport properties of a 2,1,3-benzothiadiazole-based derivative: Insights from theory

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A set of CH2-, NH-, and O-substituted 2,1,3-benzothiadiazole (BTD)-based derivatives have been investigated theoretically in order to explore their electronic, optical, and charge transport properties. The calculation results show that the electronic and optical properties of the pristine molecule can be easily tuned through changing the S substituent in the central aromatic ring. Based on the calculated maximum emission wavelength, we predict that CH2-, NH-, and O-substituted BTD-based derivatives could be used as red, green, and orange light-emitting materials, respectively. After CH2-, NH- or O-substitution, the oscillator strengths of the emission spectra are enhanced with respect to that of the pristine molecule, implying that these compounds have larger fluorescence intensity. Finally, it can be deduced that CH2-, NH-, and O-substituted BTD-based derivatives may act as hole transport materials in organic light-emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li ZH, Wong MS, Fukutani H, Tao Y. Full emission color tuning in bis-dipolar diphenylamino-endcapped oligoarylfluorenes. Chem Mater, 2005, 17: 5032–5040

    Article  CAS  Google Scholar 

  2. Yoon MH, Facchetti A, Stern CE, Marks TJ. Fluorocarbon-modified organic semiconductors: Molecular architecture, electronic, and crystal structure tuning of arene-versus fluoroarene-thiophene oligomer thin-film properties. J Am Chem Soc, 2006, 128: 5792–5801

    Article  CAS  Google Scholar 

  3. Guo X, Qin CJ, Cheng YX, Xie ZY, Geng YH, Jing XB, Wang FS, Wang LX. White electroluminescence from a phosphonate-function-alized single-polymer system with electron-trapping effect. Adv Mater, 2009, 21: 3682–3688

    Article  CAS  Google Scholar 

  4. Chen SF, Deng LL, Xie J, Peng L, Xie LH, Fan QL, Huang W. Recent developments in top-emitting organic light-emitting diodes. Adv Mater, 2010, 22: 5227–5239

    Article  CAS  Google Scholar 

  5. Xiao LX, Chen ZJ, Qu B, Luo JX, Kong S, Gong QH, Kido JJ. Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv Mater, 2011, 23: 926–952

    Article  CAS  Google Scholar 

  6. Thomas KRJ, Lin JT, Velusamy M, Tao YT, Chuen CH. Color tuning in benzo[1,2,5]thiadiazole-based small molecules by amino conjugation/deconjugation: Bright red-light-emitting diodes. Adv Funct Mater, 2004, 14: 83–90

    Article  CAS  Google Scholar 

  7. Kato SI, Matsumoto T, Shigeiwa M, Gorohmaru H, Maeda S, Ishi-i T, Mataka S. Novel 2,1,3-benzothiadiazole-based red-fluorescent dyes with enhanced two-photon absorption cross-sections. Chem Eur J, 2006, 12: 2303–2317

    Article  CAS  Google Scholar 

  8. Ran XQ, Feng JK, Ren AM, Li WC, Zou LY, Sun CC. Theoretical study on photophysical properties of ambipolar spirobifluorene derivatives as efficient blue-light-emitting materials. J Phys Chem A, 2009, 113: 7933–7939

    Article  CAS  Google Scholar 

  9. Minaev B, Minaeva V, Ågren H. Theoretical study of the cyclometalated iridium(III) complexes used as chromophores for organic light-emitting diodes. J Phys Chem A, 2009, 113: 726–735

    Article  CAS  Google Scholar 

  10. Vladimirova KG, Freidzon AY, Kotova OV, Vaschenko AA, Lepnev LS, Bagatur'yants AA, Vitukhnovskiy AG, Stepanov NF, Alfimov MV. Theoretical study of structure and electronic absorption spectra of some Schiff bases and their zinc complexes. Inorg Chem, 2009, 48: 11123–11130

    Article  CAS  Google Scholar 

  11. Zink DM, Grab T, Baumann T, Nieger M, Barnes EC, Klopper W, Bräse S. Experimental and theoretical study of novel luminescent di-, tri-, and tetranuclear copper triazole complexes. Organometallics, 2011, 30: 3275–3283

    Article  CAS  Google Scholar 

  12. Hu B, Zhang JP. Theoretical investigation on the white-light emission from a single-polymer system with simultaneous blue and orange emission. Polymer, 2009, 50: 6172–6185

    Article  CAS  Google Scholar 

  13. Hu B, Zhang JP, Chen Y. Theoretical investigation on the white-light emission from a single-polymer system with simultaneous blue and orange emission (Part II). Eur Polym J, 2011, 47: 208–224

    Article  CAS  Google Scholar 

  14. Gaussian 03, revision B. 03. Pittsburgh, PA: Gaussian Inc., 2003

  15. Gaussian 09. Wallingford, CT: Gaussian Inc., 2009

  16. Roothaan CCJ. New developments in molecular orbital theory. Rev Mod Phys, 1951, 23: 69–89

    Article  CAS  Google Scholar 

  17. Pople JA, Nesbet RK. Self-consistent orbitals for radicals. J Chem Phys, 1954, 22: 571–578

    Article  CAS  Google Scholar 

  18. McWeeny R, Diercksen G. Self-consistent perturbation theory. II. Extension to open shells. J Chem Phys, 1968, 49: 4852–4856

    Article  CAS  Google Scholar 

  19. Parr RG, Yang W. Density Functional Theory of Atoms and Molecules. Oxford: Oxford University Press, 1989.

    Google Scholar 

  20. Ernzerhof M, Scuseria GE. Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. J Chem Phys, 1999, 110: 5029–5036

    Article  CAS  Google Scholar 

  21. Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys, 1999, 110: 6158–6170

    Article  CAS  Google Scholar 

  22. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  23. Adamo C, Barone V. Toward reliable adiabatic connection models free from adjustable parameters. Chem Phys Lett, 1997, 274: 242–250

    Article  CAS  Google Scholar 

  24. Foresman JB, Head-Gordon M, Pople JA, Frisch MJ. Toward a systematic molecular orbital theory for excited states. J Phys Chem, 1992, 96: 135–149

    Article  CAS  Google Scholar 

  25. Stratmann RE, Scuseria GE, Frisch MJ. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys, 1998, 109: 8218–8224

    Article  CAS  Google Scholar 

  26. Bauernschmitt R, Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett, 1996, 256: 454–464

    Article  CAS  Google Scholar 

  27. Casida ME, Jamorski C, Casida KC, Salahub DR. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys, 1998, 108: 4439–4449

    Article  CAS  Google Scholar 

  28. Hariharan PC, Pople JA. Accuracy of AHn equilibrium geometries by single determinant molecular-orbital theory. Mol Phys, 1974, 27: 209–214

    Article  CAS  Google Scholar 

  29. Gordon MS. The isomers of silacyclopropane. Chem Phys Lett, 1980, 76: 163–168

    Article  CAS  Google Scholar 

  30. Frisch MJ, Pople JA, Binkley JS. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys, 1984, 80: 3265–3269

    Article  CAS  Google Scholar 

  31. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  32. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem, 1994, 98: 11623–11627

    Article  CAS  Google Scholar 

  33. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  34. Nelsen SF, Trieber DA II, Ismagilov RF, Teki Y. Solvent effects on charge transfer bands of nitrogen-centered intervalence compounds. J Am Chem Soc, 2001, 123: 5684–5694

    Article  CAS  Google Scholar 

  35. Nelsen SF, Blomgren F. Estimation of electron transfer parameters from AM1 calculations. J Org Chem, 2001, 66: 6551–6559

    Article  CAS  Google Scholar 

  36. Sakanoue K, Motoda M, Sugimoto M, Sakaki S. A molecular orbital study on the hole transport property of organic amine compounds. J Phys Chem A, 1999, 103: 5551–5556

    Article  CAS  Google Scholar 

  37. Malagoli M, Brédas JL. Density functional theory study of the geometric structure and energetics of triphenylamine-based hole-transporting molecules. Chem Phys Lett, 2000, 327: 13–17

    Article  CAS  Google Scholar 

  38. Li XY, Tong J, He FC. Ab initio calculation for inner reorganization energy of gas-phase electron transfer in organic molecule-ion systems. Chem Phys, 2000, 260: 283–294

    Article  CAS  Google Scholar 

  39. Lin BC, Cheng CP, Lao ZPM. Reorganization energies in the transports of holes and electrons in organic amines in organic electroluminescence studied by density functional theory. J Phys Chem A, 2003, 107: 5241–5251

    Article  CAS  Google Scholar 

  40. Marcus RA, Sutin N. Electron transfers in chemistry and biology. Biochim Biophys Acta, 1985, 811: 265–322

    CAS  Google Scholar 

  41. Marcus RA. Chemical and electrochemical electron-transfer theory. Annu Rev Phys Chem, 1964, 15: 155–196

    Article  CAS  Google Scholar 

  42. Bixon M, Jortner J. Electron transfer-From isolated molecules to biomolecules. Adv Chem Phys, 1999, 106: 35–202

    Article  CAS  Google Scholar 

  43. Bolton JR, Mataga N, McLendon G. Electron transfer in inorganic, organic, and biological systems. In: Bolton JR, Mataga N, McLendon G, Eds. Advances in Chemistry Series. Washington, DC: American Chemical Society, 1991

    Google Scholar 

  44. Hutchison GR, Ratner MA, Marks TJ. Hopping transport in conductive heterocyclic oligomers: Reorganization energies and substituent effects. J Am Chem Soc, 2005, 127: 2339–2350

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, B., Yao, C., Wang, Q. et al. CH2, NH, and O heteroatom substitution effects on the electronic, optical, and charge transport properties of a 2,1,3-benzothiadiazole-based derivative: Insights from theory. Sci. China Chem. 55, 1364–1369 (2012). https://doi.org/10.1007/s11426-012-4583-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4583-0

Keywords

Navigation