Skip to main content
Log in

Bonded excimer in stacked adenines: Semiclassical simulations

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The nonradiative decay of a π-stacked pair of adenine molecules, one of which was excited by an ultrafast laser pulse, is studied by semiclassical dynamics simulations. This simulation investigation is focused on the effect of the formation of bonded excimer in stacked adenines on the mechanism of ultrafast decay. The simulation finds that the formation of the bonded excimer significantly lowers the energy gap between the LUMO and HOMO and consequently facilitates the deactivation of the electronically excited molecule. On the other hand, the formation of the chemical bond between two stacked adenines restricts the deformation vibration of the pyrimidine of the excited molecule due to the steric effect. This slows down the formation of the coupling between the HOMO and LUMO energy levels and therefore delays the deactivation process of the excited adenine molecule to the electronic ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beukers R, Eker APM, Lohman PHM. 50 Years thymine dimer. DNA Repair, 2008, 7: 530–543

    Article  CAS  Google Scholar 

  2. Middleton CT, de La Harpe K, Su C, Law YK, Crespo-Hernandez CE, Kohler B. DNA excited-state dynamics: From single bases to the double helix. Annu Rev Phys Chem, 2009, 60: 217–239

    Article  CAS  Google Scholar 

  3. Davies RJH, Malone JF, Gan Y, Cardin CJ, Lee MPH, Neidle S. High-resolution crystal structure of the intramolecular d(TpA) thymine-adenine photoadduct and its mechanistic implications. Nucleic Acids Res, 2007, 35: 1048–1053

    Article  CAS  Google Scholar 

  4. Shukla MK, Leszczynski J. Electronic spectra, excited state structures and interactions of nucleic acid bases and base assemblies: A review. J Biomol Struct Dyn, 2007, 25: 93–118

    Article  CAS  Google Scholar 

  5. Ullrich S, Schultz T, Zgierski MZ, Stolow A. Direct observation of electronic relaxation dynamics in adenine via time-resolved photoelectron spectroscopy. J Am Chem Soc, 2004, 126: 2262–2263

    Article  CAS  Google Scholar 

  6. Schwalb NK, Temps F. Base sequence and higher-order structure induce the complex excited-state dynamics in DNA. Science, 2008, 322: 243–245

    Article  CAS  Google Scholar 

  7. Buchvarov I, Wang Q, Raytchev M, Trifonov A, Fiebig T. Electronic energy delocalization and dissipation in single- and double-stranded DNA. Proc Natl Acad Sci USA, 2007, 104: 4794–4797

    Article  CAS  Google Scholar 

  8. Tonzani S, Schatz GC. Electronic excitations and spectra in single-stranded DNA. J Am Chem Soc, 2008, 130: 7607–7612

    Article  Google Scholar 

  9. Crespo-Hernandez CE, Kohler B. Influence of secondary structure on electronic energy relaxation in adenine homopolymers. J Phys Chem B, 2004, 108: 11182–11188

    Article  CAS  Google Scholar 

  10. Kwok WM, Ma CS, Phillips DL. Femtosecond time- and wavelength-resolved fluorescence and absorption spectroscopic study of the excited states of adenosine and an adenine oligomer. J Am Chem Soc, 2006, 128: 11894–11905

    Article  CAS  Google Scholar 

  11. Santoro F, Barone V, Improta R. Influence of base stacking on excited-state behavior of polyadenine in water, based on time-dependent density functional calculations. Proc Natl Acad Sci USA, 2007, 104: 9931–9936

    Article  CAS  Google Scholar 

  12. Crespo-Hernandez CE, Cohen B, Kohler B. Base stacking controls excited-state dynamics in A-T DNA. Nature, 2005, 436: 1141–1144

    Article  CAS  Google Scholar 

  13. Plessow R, Brockhinke A, Eimer W, Kohse-Hoinghaus K. Intrinsic time- and wavelength-resolved fluorescence of oligonucleotides: A systematic investigation using a novel picosecond laser approach. J Phys Chem B, 2000, 104: 3695–3704

    Article  CAS  Google Scholar 

  14. Wang YS, Haze O, Dinnocenzo JP, Farid S, Farid RS, Gould IR. Bonded exciplexes. A new concept in photochemical reactions. J Org Chem, 2007, 72: 6970–6981

    Article  CAS  Google Scholar 

  15. Wang YS, Haze O, Dinnocenzo JP, Farid S, Farid RS, Gould IR. Bonded exciplex formation: Electronic and stereoelectronic effects. J Phys Chem A, 2008, 112: 13088–13094

    Article  CAS  Google Scholar 

  16. Yuan SA, Zhang WY, Li AY, Zhu YM, Dou YS. Dynamics simulation of a new deactivation pathway for stacked adenines. Acta Physico-Chimica Sinica, 2011, 27: 825–830

    CAS  Google Scholar 

  17. Dou YS, Torralva BR, Allen RE. Semiclassical electron-radiation-ion dynamics (SERID) and cis-trans photoisomerization of butadiene. J Mod Opt, 2003, 50: 2615–2643

    CAS  Google Scholar 

  18. Dou YS, Torralva BR, Allen RE. Interplay of electronic and nuclear degrees of freedom in a femtosecond-scale photochemical reaction. Chem Phys Lett, 2004, 392: 352–357

    Article  CAS  Google Scholar 

  19. Boykin TB, Bowen RC, Klimeck G. Electromagnetic coupling and gauge invariance in the empirical tight-binding method. Phys Rev B, 2001, 63

  20. Porezag D, Frauenheim T, Kohler T, Seifert G, Kaschner R. Construction of tight binding -like potentials on the basis of density-functional theory — Application to carbon. Phys Rev B, 1995, 51: 1294–12957

    Article  Google Scholar 

  21. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B, 1998, 58: 7260–7268

    Article  CAS  Google Scholar 

  22. Lei YB, Yuan SA, Dou YS, Wang YB, Wen ZY. Detailed dynamics of the nonradiative deactivation of adenine: A semiclassical dynamics study. J Phys Chem A, 2008, 112: 8497–8504

    Article  CAS  Google Scholar 

  23. Dou YS, Xiong SS, Wu WF, Yuan SA, Tang H. Photoinduced dissociation of cyclobutane thymine dimer studied by semiclassical dynamics simulation. J Photoch Photobio B, 2010, 101: 31–36

    Article  CAS  Google Scholar 

  24. Zhang WY, Yuan SA, Li AY, Dou YS, Zhao JS, Fang WH. Photoinduced thymine dimerization studied by semiclassical dynamics simulation. J Phys Chem C, 2010, 114: 5594–5601

    Article  CAS  Google Scholar 

  25. Allen RE, Dumitrica T, Torralva BR. Electronic and structrual pesponse of materials to fast, intence laser pluse. In: Tsen KT, ed. Ultrafast Physical Processes in Semiconductors. New York: Academic Press, 2001.315–384

    Chapter  Google Scholar 

  26. Domcke W, Yarkony DR, Köppel H. Conical Intersections: Electronic Structure, Dynamics & Spectroscopy. Singapore: World Scientific, 2004.3–41

    Book  Google Scholar 

  27. Baer M. Beyond Born-Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections, Hoboken: Wiley Interscience, 2006

    Book  Google Scholar 

  28. Bearpark MJ, Bernardi F, Clifford S, Olivucci M, Robb MA, Vreven T. Cooperating rings in cis-stilbene lead to an S 0/S 1 conical intersection. J Phys Chem A, 1997, 101: 3841–3847

    Article  CAS  Google Scholar 

  29. Levine BG, Martinez TJ. Isomerization through conical intersections. Annu Rev Phys Chem, 2007, 58: 613–634

    Article  CAS  Google Scholar 

  30. Zhang WY, Yuan SA, Wang ZJ, Qi ZM, Zhao JS, Dou YS, Lo GV. A semiclassical dynamics simulation for a long-lived excimer state of π-stacked adenines. Chem Phys Lett, 2011, 506: 303–308

    Article  CAS  Google Scholar 

  31. Conti I, Altoe P, Stenta M, Garavelli M, Orlandi G. Adenine deactivation in DNA resolved at the CASPT2//CASSCF/AMBER level. Phys Chem Chem Phys, 2010, 12: 5016–5023

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuSheng Dou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dou, Y., Zhao, W., Yuan, S. et al. Bonded excimer in stacked adenines: Semiclassical simulations. Sci. China Chem. 55, 1377–1383 (2012). https://doi.org/10.1007/s11426-012-4578-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4578-x

Keywords

Navigation