Skip to main content
Log in

Reaction mechanism and chemoselectivity of gold(I)-catalyzed cycloaddition of 1-(1-alkynyl) cyclopropyl ketones with nucleophiles to yield substituted furans

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The mechanisms of gold(I)-catalyzed cycloaddition of 1-(1-alkynyl) cyclopropyl ketones with nucleophiles have been investigated using density functional theory calculations at the B3LYP/6-31G (d, p) level of theory. A polarizable continuum model (PCM) has been established in order to evaluate the effects of solvents on the reactions. The results of the calculations indicate that the first step of the catalytic cycle is the cyclization of the carbonyl oxygen onto the triple bond which forms a new and stable resonance structure of an oxonium ion and a carbocation intermediate. The subsequent ring expansion step results in the formation of the final product and regeneration of the catalyst. Furthermore, the regioselectivity and effect of substituents has been discussed, including an analysis of energy, bond length, and natural bond orbital (NBO) charge distributions in the rate-determining step. Our computational results are consistent with earlier experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mondal S, Nogami T, Asao N, Yamamoto Y. Synthesis of novel antitumor agent 1-methoxy-5,10-dioxo-5,10-dihydro-1H-benzo[g]iso-chromene carboxylic acid (3-dimethylylaminopropyl) amide with a dual role Pd(II) catalyst. J Org Chem, 2003, 68: 9496–9498

    Article  CAS  Google Scholar 

  2. Hou XL, Cheung HY, Hon TY, Kwan PL, Lo TH, Tong SYT, Wong HNC. Regioselective syntheses of substituted furans. Tetrahedron, 1998, 54: 1955–2020

    Article  CAS  Google Scholar 

  3. Hou XL, Yang Z, Wong HNC. Chapter 5.3 Five-membered ring systems: Furans and benzofurans. Prog Heterocycl Chem, 2002, 14: 139–179

    Article  CAS  Google Scholar 

  4. Kirsch SF. Syntheses of polysubstituted furans: recent developments. Org Biomol Chem, 2006, 4: 2076–2080

    Article  CAS  Google Scholar 

  5. Brown RCD. Developments in furan syntheses. Angew Chem Int Ed, 2005, 44: 850–852

    Article  CAS  Google Scholar 

  6. Xiao Y, Zhang J. Tetrasubstituted furans by a Pd(II)-catalyzed three-component michael addition/cyclization/cross-coupling reaction. Angew Chem Int Ed, 2008, 47: 1903–1906

    Article  CAS  Google Scholar 

  7. Zhang J, Schmalz HG. Gold(I)-catalyzed reaction of 1-(1-alkynyl)-cyclopropyl ketones with nucleophiles: A modular entry to highly substituted furans. Angew Chem Int Ed, 2006, 45: 6704–6707

    Article  CAS  Google Scholar 

  8. Patil NT, Wu H, Yamamoto Y. Cu(I) Catalyst in DMF: An efficient catalytic system for the synthesis of furans from 2-(1-alkynyl)-2-alken-1-ones. J Org Chem, 2005, 70: 4531–4534

    Article  CAS  Google Scholar 

  9. Kel’in AV, Gevorgyan V. Efficient synthesis of 2-mono- and 2,5-disubstituted furans via the Cu(I)-catalyzed cycloisomerization of alkynyl ketones. J Org Chem, 2002, 67: 95–98

    Article  Google Scholar 

  10. Cacchi S. Heterocycles via cyclization of alkynes promoted by organopalladium complexes. J Organomet Chem, 1999, 576: 42–64

    Article  CAS  Google Scholar 

  11. Hashmi ASK, Schwarz L, Choi JH, Frost TM. A new gold-catalyzed C-C bond formation. Angew Chem Int Ed, 2000, 39: 2285–2288

    Article  CAS  Google Scholar 

  12. Marshall JA, Bartley GS. Observations regarding the Ag(I)-catalyzed conversion of allenones to furans. J Org Chem, 1994, 59: 7169–7171

    Article  CAS  Google Scholar 

  13. Fukuda Y, Shiragami H, Utimoto K, Nozaki H. Synthesis of substituted furans by palladium-catalyzed cyclization of acetylenic ketones. J Org Chem, 1991, 56: 5816–5819

    Article  CAS  Google Scholar 

  14. Marshall JA, Wang X-J. Synthesis of furans by silver(I)-promoted cyclization of allenyl ketones and aldehydes. J Org Chem, 1991, 56: 960–969

    Article  CAS  Google Scholar 

  15. Dudnik AS, Gevorgyan V. Metal-catalyzed [1,2]-alkyl shift in allenyl ketones: Synthesis of multisubstituted furan. Angew Chem Int Ed, 2007, 46: 5195–5197

    Article  CAS  Google Scholar 

  16. Seiller B, Bruneau C, Dixneuf PH. Novel ruthenium-catalysed synthesis of furan derivatives via intramolecular cyclization of hydroxy enynes. J Chem Soc Chem Commun, 1994: 493–494

  17. Kücükbay H, Cetinkaya B, Guesmi S, Dixneuf PH. New (carbene) ruthenium-arene complexes: Preparation and uses in catalytic synthesis of furan. Organometallics, 1996, 15: 2434–2439

    Article  Google Scholar 

  18. Seiller B, Bruneau C, Dixneuf PH. Synthesis of furans by cyclization of 2-en-4-yn-1-ols in the presence of ruthenium and palladium catalysts. Tetrahedron, 1995, 51: 13089–13102

    Article  CAS  Google Scholar 

  19. Hashmi ASK. Transition metal catalyzed dimerization of allenyl ketones. Angew Chem Int Ed, 1995, 34: 1581–1583

    Article  Google Scholar 

  20. Hashmi ASK, Ruppert TL, Knofel T, Bats JW. C-C bond formation by the palladium-catalyzed cycloisomerization/dimerization of terminal allenyl ketones: Selectivity and mechanistic aspects. J Org Chem, 1997, 62: 7295–7304

    Article  CAS  Google Scholar 

  21. Ma S, Li T. K2CO3-catalyzed michael addition-lactonization reaction of 1,2-allenyl ketones with electron-withdrawing group substituted acetates. An efficient synthesis of α-pyrone derivatives. Org Lett, 2002, 44: 505–507

    Article  CAS  Google Scholar 

  22. Ma S, Yu Z. Novel oxidative cyclization/dimerization reaction of 2,3-allenoic acids and 1,2-allenyl ketones. An efficient synthesis of 4-(3′-furanyl)butenolide derivatives. Angew Chem Int Ed, 2002, 41, 1775–1778

    Article  CAS  Google Scholar 

  23. Ma S, Zhang J, Lu L. Pd(0)-catalyzed coupling cyclization reaction of aryl or 1-alkenyl halides with 1,2-allenyl ketones: Scope and mechanism. An efficient assembly of 2,3,4-,2,3,5-Tri- and 2,3,4,5-Tetra-substituted furans. Chem Eur J, 2003, 9: 2447–2456

    Article  CAS  Google Scholar 

  24. Suhre MH, Reif M, Kirsch SF. Gold(I)-catalyzed synthesis of highly substituted furans. Org Lett, 2005, 7: 3925–3927

    Article  CAS  Google Scholar 

  25. Sromek AW, KelJin AV, Gevorgyan V. A novel 1,2-migration of acyloxy, phosphatyloxy, and sulfonyloxy groups in allenes: Efficient synthesis of Tri- and Tetrasubstituted furans. Angew Chem Int Ed, 2004, 43: 2280–2282

    Article  CAS  Google Scholar 

  26. Yao TL, Zhang XX, Larock RC. AuCl3-catalyzed synthesis of highly substituted furans from 2-(1-alkynyl)-2-alken-1-ones. J Am Chem Soc, 2004, 126: 11164–11165

    Article  CAS  Google Scholar 

  27. Ma S. Tuning the regioselectivity in palladium(II)-catalyzed isomerization of alkylidenecyclopropyl ketones. Angew Chem Int Ed, 2003, 42: 184–187

    Google Scholar 

  28. Ma S, Lu L, Zhang J. Catalytic regioselectivity control in ring-opening cycloisomerization of methylene- or alkylidenecyclopropyl ketones. J Am Chem Soc, 2004, 126: 9645–9660

    Article  CAS  Google Scholar 

  29. Padwa A, Kassir JM, Xu SL. Rhodium-catalyzed ring-opening reaction of cyclopropenes. Control of regioselectivity by the oxidation state of the metal. J Org Chem, 1991, 56: 6971–6972

    Article  CAS  Google Scholar 

  30. Ma S, Zhang J. 2,3,4- or 2,3,5-Trisubstituted furans: Catalyst-controlled highly regioselective ring-opening cycloisomerization reaction of cy-clopropenyl ketones. J Am Chem Soc, 2003, 125: 12386–12387

    Article  CAS  Google Scholar 

  31. Gorin DJ, Toste FD. Relativistic effects in homogeneous gold catalysis. Nature, 2007, 446: 395–403

    Article  CAS  Google Scholar 

  32. Stephen A, Hashmi K. “High Noon” in gold catalysis: Carbene versus carbocation intermediates. Angew Chem Int Ed, 2008, 47: 6754–6756

    Article  Google Scholar 

  33. Faza ON, López CS, Álvarez R, de Lera, R. Mechanism of the gold(I)-catalyzed rautenstrauch rearrangement: A center-to-helix-to-center chirality transfer. J Am Chem Soc, 2006, 128: 2434–2437

    Article  Google Scholar 

  34. Nieto-Oberhuber C, Munoz MP, Bunuel E, Nevado C, Cárdenas DJ, Echavarren AM. Cationic gold(I) complexes: Highly alkynophilic catalysts for the exo- and endo-cyclization of enynes. Angew Chem Int Ed, 2004, 43: 2402–2406

    Article  CAS  Google Scholar 

  35. Zhang Y, Liu F, Zhang J. Catalytic regioselective control in the diastereoselective 1,3-dipolar cycloaddition reactions of 1-(1-alkynyl) cyclopropyl ketones with nitrones. Chem Eur J, 2010, 16: 6146–6150

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Jr Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. GAUSSIAN 03 (Revision D01); Gaussian, Inc.: Pittsburgh, PA, 2004

    Google Scholar 

  37. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  38. Lee C, Yang W, Parr RG. Development of the colle-salvetti correlation energy formula into a functional of the electron density. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  39. Andrae D, Häussermann U, Dolg M, Stoll H, Preuss H. Energy-adjusted ab initio pseudopotentials for the second row and third row transition elements. Theor Chim Acta, 1990, 77: 123–141

    Article  CAS  Google Scholar 

  40. Miertuš S, Tomasi J. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem Phys, 1982, 65: 239–245

    Article  Google Scholar 

  41. Reed AE, Weinstock RB, Weinhold F. Natural atomic orbitals and natural population analysis. J Chem Phys, 1985, 83: 735–746

    Article  CAS  Google Scholar 

  42. Carpenter JE, Weinhold F. Open-Shell NBO. THEOCHEM 1988, 169: 41–62

    Article  Google Scholar 

  43. Reed AE, Curtiss LA, Weinhold F. Natural bond orbital analysis of near-Hartree-Fock water dimer. Chem Rev, 1988, 88: 899–926

    Article  CAS  Google Scholar 

  44. Ito K, Hara Y, Mori S, Kusama H, Iwasawa N. Theoretical study on the cycloaddition reaction of a tungsten-containing carbonyl ylide. Chem Eur J, 2009, 15: 12408–12416

    Article  CAS  Google Scholar 

  45. Soriano J, Marco-Contelles J. New insights on the mechanism of the transition-metal stereoselective olefin cyclopropanation. Chem Eur J, 2008, 14, 6771–6779

    Article  CAS  Google Scholar 

  46. Fang R, Su C-Y, Zhao C, Phillips DL. DFT Study on the mechanism and regioselectivity of gold(I)-catalyzed synthesis of highly substituted furans based on 1-(1-alkynyl)cyclopropyl ketones with nucleophiles. Organometallics, 2009, 28: 741–748

    Article  CAS  Google Scholar 

  47. Glaser R, Yoo Y-H, Chen GS, Barnes CL. Crystal structure of trans-Fe(CO)3(PPh3)2, tricarbonylbis(triphenylphosphine)iron(0), and ab initio study of the bonding in trans-Fe(CO)3(PH3)2. Organometallics, 1994, 13, 2578–2586

    Article  CAS  Google Scholar 

  48. Ivanov SA, Arachchige I, Aikens CM. Density functional analysis of geometries and electronic structures of gold-phosphine clusters. The case of Au4(PR3) 42+ and Au4(μ2-I)2(PR3)4. J Phys Chem A, 2011, 115: 8017–8031

    Article  CAS  Google Scholar 

  49. Hammond GS. A correlation of reaction rates. J Am Chem Soc, 1955, 77: 334–338

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiYuan Geng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Y., Fang, R., Geng, Z. et al. Reaction mechanism and chemoselectivity of gold(I)-catalyzed cycloaddition of 1-(1-alkynyl) cyclopropyl ketones with nucleophiles to yield substituted furans. Sci. China Chem. 55, 1413–1420 (2012). https://doi.org/10.1007/s11426-012-4573-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4573-2

Keywords

Navigation