Science China Chemistry

, Volume 55, Issue 6, pp 910–913 | Cite as

Solvothermal preparation of iron phosphonate cages

Communications Special Topic · Molecular Magnetism

Abstract

Three new iron(III) phosphonate cage-like complexes with [Fe4], [Fe9] and [Fe14] cores have been synthesized by solvothermal reaction with various starting materials. Magnetic studies show overall antiferromagnetic interaction presented in these cages.

Keywords

polynuclear iron coordination phosphonate magnetic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saalfrank RW, Demleitner B. Transition Metals in Supramolecular Chemistry (Sauvage JP, ed). Chichester: Wiley, 1999Google Scholar
  2. 2.
    Gaspar AB, Ksenofontov V, Seredyuk M, Gütlich P. Multifunctionality in spin crossover materials. Coord Chem Rev, 2005, 249: 2661–2676CrossRefGoogle Scholar
  3. 3.
    Beltran LMC, Long JR. Directed assembly of metal-cyanide cluster magnets. Acc Chem Res, 2005, 38: 325–334CrossRefGoogle Scholar
  4. 4.
    Aromí G, Brechin EK. Synthesis of 3d metallic single-molecule magnets. Struct Bonding, 2006, 122: 1–67CrossRefGoogle Scholar
  5. 5.
    Camarero J, Coronado E. Molecular vs. inorganic spintronics: The role of molecular materials and single molecules. J Mater Chem, 2009, 19: 1678–1684CrossRefGoogle Scholar
  6. 6.
    Winpenny REP. Serendipitous assembly of polynuclear cage compounds. J Chem Soc Dalton Trans, 2002, 1–10Google Scholar
  7. 7.
    Walawalkar MG, Roesky HW, Murugavel R. Molecular Phosphonate cages: Model compounds and starting materials for phosphate materials. Acc Chem Res, 1999, 32: 117–126 and references therein.CrossRefGoogle Scholar
  8. 8.
    Khan MI, Zubieta J. Oxovanadium and oxomolybdenum clusters and solids incorporating oxygen-donor ligand. Prog Inorg Chem, 1995, 43: 1–149 and references therein.CrossRefGoogle Scholar
  9. 9.
    Clearfield A. Metal phosphonate chemistry. Prog Inorg Chem, 1998, 47: 371–510 and references therein.CrossRefGoogle Scholar
  10. 10 (a).
    Langley S, Helliwell M, Raftery J, Tolis EI, Winpenny REP. Phosphonate ligands encourage a Platonic relationship between cobalt(II) and alkali metal ions. Chem Commun, 2004, 142–143Google Scholar
  11. 10 (b).
    Maheswaran S, Chastanet G, Teat SJ, Mallah T, Sessoli R, Wernsdorfer W, Winpenny REP. Phosphonate ligands stabilize mixed-valent {MnIII 20−xMnII x} clusters with large spin and coercivity. Angew Chem Int Ed, 2005: 44, 5044–5048CrossRefGoogle Scholar
  12. 10 (c).
    Langley S, Helliwell M, Sessoli R, Rosa P, Wernsdorfer W, Winpenny REP. Slow relaxation of magnetisation in an octanuclear cobalt(II) phosphonate cage complex. Chem Commun, 2005, 5029–5031Google Scholar
  13. 10 (d).
    Khanra S, Kloth M, Mansaray H, Muryn CA, Tuna F, Sanũdo EC, Helliwell M, McInnes EJL, Winpenny REP. Synthesis of molecular vanadium(III) phosphonates. Angew Chem Int Ed, 2007, 46: 5568–5571CrossRefGoogle Scholar
  14. 11 (a).
    Zheng YZ, Evangelisti M, Winpenny REP. Co-Gd phosphonate complexes as magnetic refrigerants. Chem Sci, 2011, 2: 99–102CrossRefGoogle Scholar
  15. 11 (b).
    Zheng YZ, Evangelisti M, Winpenny REP. Large magnetocaloric effect in a Wells-Dawson type {Ni6Gd6P6} cage. Angew Chem Int Ed, 2011, 50: 3692–3695CrossRefGoogle Scholar
  16. 11 (c).
    Zheng YZ, Evangelisti, M, Tuna F, Winpenny REP. Co-Ln mixed-metal phosphonate grids and cages as molecular magnetic refrigerants. J Am Chem Soc, 2012, 134: 1057–1065CrossRefGoogle Scholar
  17. 12 (a).
    Tolis EI, Helliwell M, Langley S, Raftery J, Winpenny REP. Synthesis and characterization of iron(III) phosphonate cage complexes. Angew Chem Int Ed, 2003, 42: 3804–3808CrossRefGoogle Scholar
  18. 12 (b).
    Konar S, Bhuvanesh N, Clearfield A. Oxo-, hydroxo-, and peroxo-bridged Fe(III) phosphonate cages. J Am Chem Soc, 2006, 128: 9604–9605CrossRefGoogle Scholar
  19. 12 (c).
    Khanra S, Helliwell M, Tuna F, McInnes EJL, Winpenny REP. Dalton Trans, 2009, 6166–6174Google Scholar
  20. 12 (d).
    Gopal K, Tuna F, Winpenny REP. Octa- and hexametallic iron(III)-potassium phosphonate cages. Dalton Trans, 2011, 40: 12044–12047CrossRefGoogle Scholar
  21. 13.
    Low DM, Jones LF, Bell A, Brechin EK, Mallah T, Rivire E, Teat SJ, McInnes EJL. Solvothermal synthesis of a tetradecametallic FeIII cluster. Angew Chem Int Ed, 2003, 42: 3781–3784CrossRefGoogle Scholar
  22. 14.
    Harris notation describes the binding mode as X.Y1Y2...Yn where X is the overall number of metal bound by the whole ligand, and each value of Y refers to the number of metal atoms attached to the different donor atoms. For detail, see Coxall RA, Harris SG, Henderson DK, Parsons S, Tasker PA, Winpenny REP. Inter-ligand reactions: in situ formation of new polydentate ligands. J Chem Soc Dalton Trans, 2000, 2349–2356Google Scholar
  23. 15.
    Kahn O. Molecular Magnetism. New York: VCH, 1993Google Scholar
  24. 16.
    Sessoli R, Gatteschi D, Villain J. Molecular Nanomagnets. Oxford: Oxford University Press, 2006Google Scholar
  25. 17.
    Gatteschi D, Sessoli R. Quantum tunneling of magnetization and related phenomena in molecular materials. Angew Chem Int Ed, 2003, 43: 268–297CrossRefGoogle Scholar
  26. 18.
    Blake AB, Fraser LR. Crystal structure and mass spectrum of μ3-oxo-hexakis(μ-trimethyl-acetato)-trismethanoltri-iron(III) chloride, a trinuclear basic iron(III) carboxylate. J Chem Soc Dalton Trans, 1975, 193–197Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of ChemistryUniversity of ManchesterManchesterUK
  2. 2.Center for Applied Chemical Research, Frontier Institute of Science and TechnologyXi’an Jiaotong UniversityXi’anChina
  3. 3.The Photon Science InstituteUniversity of ManchesterManchesterUK

Personalised recommendations