Skip to main content
Log in

Di- and tetranuclear heterometallic CuII-LnIII complexes (Ln = Gd and Dy): Synthesis, structure and magnetic properties

  • Articles
  • Special Topic · Molecular Magnetism
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Four 3d–4f heterometallic complexes, [CuIILnIII(bpt)2(NO3)3(MeOH)] (Ln = Gd, 1; Dy, 2; bptH = 3,5-bis(pyrid-2-yl)-1,2,4- triazole), [CuII 2LnIII 2(µ-OH)2(bpt)4Cl4 (H2O)2]·6H2O (Ln = Gd, 3; Dy, 4), have been synthesized under solvothermal conditions. X-ray structural analyses reveal that 1 and 2 are isostructural while 3 and 4 are isostructural. In each complex, the copper and gadolinium or dysprosium ions are linked by two triazolate bridges and form a CuII-LnIII dinuclear unit. The intramolecular Cu-Ln distances are 4.542, 4.525, 4.545 and 4.538 Å for 1, 2, 3 and 4, respectively. Two dinuclear CuLn units are bridged by two OH groups into the zig-zag tetranuclear {CuII 2LnIII 2} structures with the Ln(III)...Ln(III) distances of 3.742 and 3.684 Å for 3 and 4, respectively. Magnetic studies show that the antiferromagnetic CuII-LnIII interactions occur in 1 (J CuGd = −0.21 cm−1) and 2. The antiferromagnetic interaction occurs in complex 3 with J CuGd = −0.82 cm−1 and J GdGd = −0.065 cm−1, while dominant ferromagnetic interaction occurs in complex 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winpenny REP. The structures and magnetic properties of complexes containing 3d- and 4f-metals. Chem Soc Rev, 1998, 27: 447–452

    Article  CAS  Google Scholar 

  2. Piguet C, Bunzli JCG. Mono- and polymetallic lanthanide-containing functional assemblies: A field between tradition and novelty. Chem Soc Rev, 1999, 28: 347–358

    Article  CAS  Google Scholar 

  3. Kahn O. Chemistry and physics of supramolecular magnetic materials. Acc Chem Res, 2000, 33: 647–657

    Article  CAS  Google Scholar 

  4. Sakamoto M, Manseki K, Okawa H. d-f Heteronuclear complexes: Synthesis, structures and physicochemical aspects. Coord Chem Rev, 2001, 219–221: 379–414

    Article  Google Scholar 

  5. Benelli C, Gatteschi D. Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. Chem Rev, 2002, 102: 2369–2387

    Article  CAS  Google Scholar 

  6. Kou HZ, Zhou BC, Gao S, Wang RJ. A 2D cyano- and oxamidato-bridged heterotrimetallic CrIII-CuII-GdIII complex. Angew Chem Int Ed, 2003, 42: 3288–3291

    Article  CAS  Google Scholar 

  7. Osa S, Kido T, Matsumoto N, Re N, Pochaba A, Mrozinski J. A tetranuclear 3d–4f single molecule magnet: [CuIILTbIII(hfac)2]2. J Am Chem Soc, 2004, 126: 420–421

    Article  CAS  Google Scholar 

  8. Zaleski CM, Depperman EC, Kampf JW, Kirk ML, Pecoraro VL. Synthesis, structure, and magnetic properties of a large lanthanide-transition-metal single-molecule magnet. Angew Chem Int Ed, 2004, 43: 3912–3914

    Article  CAS  Google Scholar 

  9. Sangregorio LC, Sessoli R, Gatteschi D. Molecular engineering for single-chain-magnet behavior in a one-dimensional dysprosiumnitronyl nitroxide compound. Angew Chem Int Ed, 2005, 44: 5817–5821

    Article  Google Scholar 

  10. Yukawa Y, Aromi G, Igarashi S, Ribas J, Zvyagin SA, Krzystek J. [GdNi6] and [LaNi6]: High-field epr spectroscopy and magnetic studies of exchange-coupled octahedral clusters. Angew Chem Int Ed, 2005, 44: 1997–2001

    Article  CAS  Google Scholar 

  11. He Z, He C, Gao EQ, Wang ZM, Yang XF, Liao CS, Yan CH. Lanthanide-transition heterometallic extended structures with novel orthogonal metalloligand as building block. Inorg Chem, 2003, 42: 2206–2208

    Article  CAS  Google Scholar 

  12. Zhang JJ, Hu SM, Xiang SC, Sheng TL, Wu XT, Li YM. Syntheses, structures, and properties of high-nuclear 3d–4f clusters with amino acid as ligand: {Gd6Cu24}, {Tb6Cu26}, and {(Ln6Cu24)2Cu} (Ln = Sm, Gd). Inorg Chem, 2006, 45: 7173–7181

    Article  CAS  Google Scholar 

  13. Liu FC, Zeng YF, Jiao J, Li JR, Bu XH, Ribas J, Batten SR. Novel heterometallic 3d–4f metal-azido complex of mixed ligands with unprecedented structure type: Synthesis, structure, and magnetic properties. Inorg Chem, 2006, 45: 6129–6131

    Article  CAS  Google Scholar 

  14. Aronica C, Chastane G, Pilet G, Guennic B, Robert LV, Wernsdorfer W, Luneau D. Cubane variations: Syntheses, structures, and magnetic property analyses of lanthanide(III)-copper(II) architectures with controlled nuclearities. Inorg Chem, 2007, 46: 6108–6119

    Article  CAS  Google Scholar 

  15. Chandrasekhar V, Pandian BM, Boomishankar R, Steiner A, Vittal JJ, Houri A, Clerac R. Trinuclear heterobimetallic Ni2Ln complexes [L2Ni2Ln][ClO4] (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Er; LH3 = (S)P[N(Me)NCH-C6H3-2-OH-3-OMe]3): From simple paramagnetic complexes to single-molecule magnet behavior. Inorg Chem, 2008, 47: 4918–4929

    Article  CAS  Google Scholar 

  16. Schray Dirk, Abbas G, Lan YH, Mereacre V, Sundt A, Dreiser J, Waldmann O, Kostakis GE, Anson CE, Powell AK. Combined magnetic susceptibility measurements and 57Fe mössbauer spectroscopy on a ferromagnetic {FeIII 4Dy4} ring. Angew Chem Int Ed, 2010, 49: 5185–5188

    CAS  Google Scholar 

  17. Bencini A, Benelli C, Caneschi A, Carlin RL, Dei A, Gatteschi D. Crystal and molecular structure of and magnetic coupling in two complexes containing gadolinium(III) and copper(II) ions. J Am Chem Soc, 1985, 107: 8128–8136

    Article  CAS  Google Scholar 

  18. Benelli C, Caneschi A, Gatteschi D, Guillou O, Pardi L. Synthesis, crystal structure, and magnetic properties of tetranuclear complexes containing exchange-coupled dilanthanide-dicopper (lanthanide = gadolinium, dysprosium) species. Inorg Chem, 1990, 29: 1750–1755

    Article  CAS  Google Scholar 

  19. Kahn ML, Mathoniere C, Kahn O. Nature of the interaction between LnIII and CuII ions in the ladder-type compounds {Ln2[Cu(opba)]3}·S (Ln = lanthanide element; opba = ortho-phenylenebis(oxamato), S = solvent molecules). Inorg Chem, 1999, 38: 3692–3697

    Article  CAS  Google Scholar 

  20. Liang Y, Cao R, Su W, Hong M, Zhang W. Syntheses, structures, and magnetic properties of two gadolinium(III)-copper(II) coordination polymers by a hydrothermal reaction. Angew Chem Int Ed, 2000, 39: 3304–3307

    Article  CAS  Google Scholar 

  21. Figuerola A, Diaz C, Fallash MSE, Ribas J, Maestro M, Mahfa J. Structure and magnetism of the first cyano-bridged hetero-one-dimensional GdIII-CrIII complexes. Chem Commun, 2001, 1204–1205

  22. Paulovic J, Cimpoesu F, Ferbinteanu M, Hirao K. Mechanism of ferromagnetic coupling in copper(II)-gadolinium(III) complexes. J Am Chem Soc, 2004, 126: 3321–3331

    Article  CAS  Google Scholar 

  23. Costes JP, Dahan F, Dupuis A. Is ferromagnetism an intrinsic property of the CuII/GdIII couple? 2. Structures and magnetic properties of novel trinuclear complexes with µ-phenolato-µ-oximato (Cu-Ln-Cu) cores (Ln = La, Ce, Gd). Inorg Chem, 2000, 39: 5994–6000

    Article  CAS  Google Scholar 

  24. Madalan AM, Roesky HW, Andruh M, Noltemeyer M, Stanica N. The first coordination compound containing three different types of spin carriers: 2p-3d–4f (TCNQ·−, Cu2+ and Gd3+). Chem Commun, 2002, 1638–1639

  25. Kido T, Ikuta Y, Sunatsuki Y, Ogawa Y, Matsumoto N. Nature of copper(II)-lanthanide(III) magnetic interactions and generation of a large magnetic moment with magnetic anisotropy of 3d–4f cyclic cylindrical tetranuclear complexes [CuIILLnIII(hfac)2]2, (H3L=1-(2-Hydroxybenzamido)-2-(2-hydroxy-3-methoxybenzylideneamino)ethane and Hhfac = hexafluoroacetylacetone, LnIII = Eu, Gd, Tb, Dy). Inorg Chem, 2003, 42: 398–408

    Article  CAS  Google Scholar 

  26. Zhang L, Wang SB, Yang GM, Tang JK, Liao DZ, Jiang ZH, Yan SP, Cheng P. A ferromagnetically coupled CrCu3 tetramer and GdCu4 pentamer with a [15]N4 macrocylic ligand incorporating an oxamido bridge. Inorg Chem, 2003, 42: 1462–1466

    Article  CAS  Google Scholar 

  27. Mishra A, Wernsdorfer W, Parsons S, Christou G, Brechin EK. The search for 3d–4f single-molecule magnets: synthesis, structure and magnetic properties of a [MnIII 2DyIII 2] cluster. Chem Commun, 2005. 2086–2088

  28. Novitchi G, Wernsdorfer W, Chibotaru LF, Costes JP, Anson CE, Powell AK. Supramolecular “double-propeller” dimers of hexanuclear CuII/LnIII complexes: A {Cu3Dy3}2 single-molecule magnet. Angew Chem Int Ed, 2009, 48: 1614–1619

    Article  CAS  Google Scholar 

  29. Mori F, Nyui T, Ishida T, Nogami T, Choi KY, Nojiri H. Oximate-bridged trinuclear Dy-Cu-Dy complex behaving as a single-molecule magnet and its mechanistic investigation. J Am Chem Soc, 2006, 128: 1440–1441

    Article  CAS  Google Scholar 

  30. Schneider CJ, Cashion JD, Moubaraki B, Neville SM, Batten SR, Turner DR, Murray KS. The magnetic and structural elucidation of 3,5-bis(2-pyridyl)-1,2,4-triazolate-bridged dinuclear iron(II) spin crossover compounds. Polyhedron, 2007, 26: 1764–1772

    Article  CAS  Google Scholar 

  31. Chen JC, Hu S, Zhou AJ, Tong ML, Tong YX. Synthesis, crystal structures, and magnetic properties of three new iron complexes derived from 3,5-bis(pyridin-2-yl)-1,2,4-triazole. Z Anorg Allg Chem, 2006, 632: 475–481

    Article  CAS  Google Scholar 

  32. Meng ZS, Yun L, Zhang WX, Hong CG, Herchel R, Ou YC, Leng JD, Peng MX, Lin ZJ, Tong ML. Reactivity of 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole, structures and magnetic properties of polynuclear and polymeric Mn(II), Cu(II) and Cd(II) complexes. Dalton Trans, 2009. 10284–10295

  33. Cheng L, Zhang WX, Ye BH, Lin JB, Chen XM. Spin canting and topological ferrimagnetism in two manganese(II) coordination polymers generated by in situ solvothermal ligand reactions. Eur J Inorg Chem, 2007, 2668–2676

  34. Zhang JP, Lin YY, Huang XC, Chen XM. Molecular chairs, zippers, zigzag and helical chains: chemical enumeration of supramolecular isomerism based on a predesigned metal-organic building-block. Chem Commun, 2005, 1258–1260

  35. Bao X, Leng JD, Meng ZS, Lin ZJ, Tong ML, Nihei M, Oshio H. Tuning the spin states of two apical iron(II) ions in the trigonal-bipyramidal [{FeII(µ-bpt)3}2FeII 33-O)]2+ cations through the choice of anions. Chem Eur J, 2010, 16: 6169–6174

    Article  CAS  Google Scholar 

  36. Zhang JP, Lin YY, Huang XC, Chen XM. Copper(I) 1,2,4-triazolates and related complexes: Studies of the solvothermal ligand reactions, network topologies, and photoluminescence properties. J Am Chem Soc, 2005, 127: 5495–5506

    Article  CAS  Google Scholar 

  37. Tong ML, Hong CG, Zheng LL, Peng MX, Gaita-Arińo A, Clemente-Juan JM. New reactivity of 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole: Synthesis and structure of a mononuclear species, a dinuclear species, and a novel tetranuclear nickel(II) rectangle box, and magnetic properties of the dinuclear and tetranuclear complexes. Eur J Inorg Chem, 2007. 3710–3717

  38. Yucesan G, Yu MH, Ouellette W, O’Connor CJ, Zubieta J. Secondary metal-ligand cationic subunits {ML}n+ as structural determinants in the oxovanadium/phenylphosphonate/{ML}n+ system, where {ML} is a Cu2+/organonitrogen moiety. CrystEngComm, 2005, 7: 480–490

    Article  CAS  Google Scholar 

  39. Guo PH, Liu JL, Zhang ZM, Ungur L, Chibotaru LF, Leng JD, Guo FS, Tong ML. The first {Dy4} single-molecule magnet with a toroidal magnetic moment in the ground state. Inorg Chem, 2012, 51: 1233–1235

    Article  CAS  Google Scholar 

  40. CrysAlis RED, version 1.1, Oxford Diffraction Ltd., 2003

  41. Sheldrick GM. SHELXTL-97, Universität of Göttingen: Göttingen, Germany, 1997

    Google Scholar 

  42. Bradenburg K. Diamond. ver3.1, Crystal Impact, Germany, 2005

  43. Kahn O. Molecular Magnetism, 1993

  44. Chiboub Fellah FZ, Costes JP, Dahan F, Duhayon C, Novitchi G, Tuchagues JP, Vendier L. Di- and triheteronuclear Cu-Gd and Cu-Gd-Cu complexes with dissymmetric double bridge. Inorg Chem, 2008, 47: 6444–6451

    Article  Google Scholar 

  45. Akine S, Matsumoto T, Taniguchi T, Nabeshima T. Synthesis, structures, and magnetic properties of tri- and dinuclear copper(II)-gado-linium(III) complexes of linear oligooxime ligands. Inorg Chem, 2005, 44: 3270–3274

    Article  CAS  Google Scholar 

  46. Madalan AM, Avarvari N, Fourmigué M, Clérac R, Chibotaru LF, Clima S, Andruh M. Heterospin systems constructed from [Cu2Ln]3+ and [Ni(mnt)2]1−,2− tectons: First 3p-3d–4f complexes (mnt = Maleonitriledithiolato). Inorg Chem, 2008, 47: 940–950

    Article  CAS  Google Scholar 

  47. Richardson MF, Wagner WF, Sands DE. Rare-earth trishexafluoroacetylacetonates and related compounds. J Inorg Nucl Chem, 1968, 30: 1275–1289

    Article  CAS  Google Scholar 

  48. Tang JK, Hewitt I, Madhu NT, Chastanet G, Wernsdorfer W, Anson CE, Benelli C, Sessoli R, Powell AK. Dysprosium triangles showing single-molecule magnet behavior of thermally excited spin states. Angew Chem, 2006, 118: 1761–1765; Angew Chem Int Ed, 2006, 45: 1729–1733

    Article  Google Scholar 

  49. Borrás-Almenar JJ, Clemente-Juan JM, Coronado E, Tsukerblat BS. High-nuclearity magnetic clusters: Generalized spin hamiltonian and its use for the calculation of the energy levels, bulk magnetic properties, and inelastic neutron scattering spectra. Inorg Chem, 1999, 38: 6081–6088

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingLiang Tong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Guo, F., Guo, P. et al. Di- and tetranuclear heterometallic CuII-LnIII complexes (Ln = Gd and Dy): Synthesis, structure and magnetic properties. Sci. China Chem. 55, 934–941 (2012). https://doi.org/10.1007/s11426-012-4564-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4564-3

Keywords

Navigation